• Square Steel Billet Q235 Grade Prime Quality 6# System 1
  • Square Steel Billet Q235 Grade Prime Quality 6# System 2
  • Square Steel Billet Q235 Grade Prime Quality 6# System 3
  • Square Steel Billet Q235 Grade Prime Quality 6# System 4
  • Square Steel Billet Q235 Grade Prime Quality 6# System 5
  • Square Steel Billet Q235 Grade Prime Quality 6# System 6
Square Steel Billet Q235 Grade Prime Quality 6#

Square Steel Billet Q235 Grade Prime Quality 6#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 Grade Prime Quality 6#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 Grade Prime Quality 6#

Main Feature Square Steel Billet Q235 Grade Prime Quality 6#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 Grade Prime Quality 6#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 Grade Prime Quality 6#


Specifications of Square Steel Billet Q235 Grade Prime Quality 6#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 Grade Prime Quality 6#

FAQ of Square Steel Billet Q235 Grade Prime Quality 6#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q: How are steel billets used in the manufacturing of shafts?
Steel billets are an integral component in the manufacturing of shafts. Billets are essentially semi-finished steel products that are typically square or rectangular in shape. They are produced through a process called casting, where molten steel is poured into molds and allowed to solidify. In the context of shaft manufacturing, steel billets serve as the starting material. They are heated to a specific temperature to make them more malleable and easier to work with. Once heated, the billets are then subjected to a series of processes such as forging, rolling, or extrusion. Forging involves shaping the heated billet by applying compressive forces using a hammer or a press. This process helps refine the grain structure of the steel, improving its strength and reducing any internal defects. Rolling, on the other hand, involves passing the billet through a series of rollers to gradually shape it into the desired form. It is commonly used for producing long, cylindrical shafts. Extrusion is another technique used in the manufacturing of shafts. In this process, the heated billet is forced through a die using high pressure, resulting in a shaft with a specific cross-sectional shape. This method is particularly useful for producing shafts with complex geometries or intricate details. After the initial shaping process, the shafts are further machined, heat-treated, and finished to achieve the desired dimensions, surface finish, and mechanical properties. Machining involves removing excess material and creating specific features such as keyways or threads. Heat treatment is used to enhance the shaft's strength, hardness, and durability. In summary, steel billets are the raw material in the manufacturing process of shafts. Through various shaping techniques such as forging, rolling, or extrusion, the billets are transformed into the desired shape, size, and properties of the shafts. This ensures that the resulting shafts are strong, reliable, and suitable for their intended applications in industries such as automotive, aerospace, and machinery.
Q: How do steel billets contribute to the infrastructure development?
Steel billets are a crucial component in infrastructure development as they serve as the raw material for manufacturing various steel products used in construction. These billets are used to produce reinforcement bars, beams, columns, and other structural elements that provide strength and stability to buildings, bridges, roads, and other infrastructure projects. By providing a strong and durable foundation, steel billets contribute significantly to the overall safety and longevity of infrastructure, promoting sustainable development and economic growth.
Q: What are the different types of cleaning methods used for steel billets?
There are several different types of cleaning methods used for steel billets, depending on the specific requirements and desired outcome. Some of the common cleaning methods for steel billets include: 1. Acid cleaning: This method involves the use of acid solutions to remove surface contaminants, such as rust, scale, and grease. Acid cleaning is effective in removing stubborn stains and corrosion, but it requires careful handling and proper disposal of the acidic waste products. 2. Shot blasting: Shot blasting is a mechanical cleaning method that uses high-speed projectiles to impact the surface of the steel billets. This process helps remove rust, scale, and other surface impurities, leaving a clean and smooth finish. Shot blasting is commonly used for large-scale cleaning operations and can be automated for efficiency. 3. Pickling: Pickling is a chemical cleaning method that involves immersing the steel billets in an acid solution, usually hydrochloric acid or sulfuric acid. This process removes oxide layers and other impurities from the surface, resulting in a clean and corrosion-resistant finish. 4. Ultrasonic cleaning: Ultrasonic cleaning uses high-frequency sound waves to agitate a cleaning solution, creating microscopic bubbles that help dislodge dirt, grease, and contaminants from the surface of the steel billets. This method is effective for removing fine particles and can reach areas that are difficult to clean by other methods. 5. Electrolytic cleaning: Electrolytic cleaning utilizes an electric current to remove surface impurities from the steel billets. The billets are immersed in an electrolyte solution, and the application of a direct current causes the impurities to be attracted to an electrode, effectively cleaning the surface. 6. Chemical cleaning: Chemical cleaning involves the use of specialized chemicals to dissolve or react with surface contaminants, such as rust, oil, or paint. Different chemicals are used depending on the type of contaminant and the desired outcome. Chemical cleaning is effective for removing organic and inorganic substances from the steel billets. Overall, these different cleaning methods offer various approaches to achieve a clean and smooth surface for steel billets, ensuring their quality and suitability for further processing or applications.
Q: How does the carbon content affect the properties of a steel billet?
The carbon content in a steel billet has a significant impact on its properties. Higher carbon content results in increased hardness and strength, making the steel more suitable for applications requiring high durability and wear resistance. However, higher carbon content also reduces the steel's ductility and toughness, making it more prone to brittleness and cracking. On the other hand, lower carbon content enhances the steel's ductility and toughness, but at the expense of reduced hardness and strength. Therefore, the carbon content must be carefully selected to achieve the desired balance of properties for specific applications.
Q: What do you mean by adding carbon to a table tennis racket?
The addition of carbon fibers increases the elasticity of the racket so as to increase the strength of the strike ball
Q: How are steel billets used in the production of automotive frames?
Steel billets are used in the production of automotive frames as a primary raw material. Billets are essentially long, rectangular-shaped pieces of steel that are heated and then formed into specific shapes through various manufacturing processes. In the case of automotive frames, these billets are typically heated and then passed through a series of dies and rollers to form the desired shape and dimensions. Once the billets are formed into the appropriate shape, they are further processed through cutting, bending, and welding techniques to create the intricate and sturdy structure of an automotive frame. The use of steel billets in the production of automotive frames is preferred due to the high strength and durability properties of steel, which are crucial for ensuring the safety and structural integrity of the vehicles. Moreover, steel billets offer excellent formability and machinability, allowing manufacturers to create complex frame designs that meet the specific requirements of different vehicle models. Additionally, steel is a cost-effective material, making it a popular choice for mass production in the automotive industry. Overall, steel billets play a vital role in the production of automotive frames by providing a strong and reliable foundation for the vehicle's structure. The use of these raw materials, along with advanced manufacturing techniques, ensures that automotive frames are able to withstand various forces and impacts, ultimately contributing to the overall safety and performance of the vehicles.
Q: What are the main characteristics of high-quality steel billets?
High-quality steel billets possess several key characteristics that differentiate them from other types of steel. Firstly, their chemical composition is of superior quality. This means that they are crafted using carefully selected raw materials, resulting in the perfect balance of elements necessary for optimal strength, durability, and resistance to corrosion. The chemical composition plays a vital role in determining the overall quality and performance of the steel billets. Secondly, high-quality steel billets display a uniform and refined microstructure. This indicates that the grains within the steel are evenly distributed and have undergone meticulous refinement during the manufacturing process. This uniform and refined microstructure significantly enhances the strength and toughness of the steel, rendering it more resistant to cracking, deformation, and other types of mechanical stress. Furthermore, high-quality steel billets boast precise dimensions. They are manufactured with stringent tolerances to ensure that they possess the accurate length, width, and thickness required. These precise dimensions are crucial as they facilitate easy and accurate machining, forging, or rolling of the billets into the desired end products. This guarantees that the final products created from these billets possess consistent and accurate dimensions. Lastly, high-quality steel billets exhibit excellent surface quality. They are devoid of any defects, such as cracks, scale, or other surface imperfections. A smooth and clean surface allows for improved heat transfer, enhanced weldability, and an overall superior appearance of the final products. It also ensures that the billets can be effortlessly inspected and processed without encountering any hindrances. Ultimately, high-quality steel billets possess superior chemical composition, uniform and refined microstructure, precise dimensions, and excellent surface quality. These characteristics are indispensable in manufacturing steel billets that adhere to the highest standards of strength, durability, and reliability, making them suitable for a wide range of industrial applications.
Q: What are the different types of steel billet forging defects?
Some common types of steel billet forging defects include surface cracks, internal voids or cavities, improper grain flow, and dimensional inconsistencies. Other defects may include porosity, inclusions, and decarburization.
Q: How is the quality of steel billets ensured during the manufacturing process?
The quality of steel billets is ensured during the manufacturing process through various measures such as rigorous inspection and testing procedures. These include visual inspections, dimensional checks, and non-destructive testing techniques like ultrasonic testing or magnetic particle inspection. Additionally, chemical analysis is conducted to verify the composition of the steel billets, ensuring they meet the required specifications. By implementing these quality control measures, any potential defects or inconsistencies can be identified and addressed promptly, ensuring the production of high-quality steel billets.
Q: How are steel billets used in the manufacturing of pressure vessel components?
Steel billets are used in the manufacturing of pressure vessel components by being melted and formed into the desired shape through processes like casting, forging, or extrusion. These billets serve as the raw material for creating various components such as shells, heads, and nozzles, which are then further processed, machined, and assembled to construct the pressure vessel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords