Steel Bloom Manufactured by Big Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Steel Bloom Manufactured by Big Blast Furnace
1.Structure of Steel Bloom Manufactured by Big Blast Furnace
Steel Bloom Manufactured by Big Blast Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Steel Bloom Manufactured by Big Blast Furnace
Steel Bloom Manufactured by Big Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
3. Steel Bloom Manufactured by Big Blast Furnace Images
4. Steel Bloom Manufactured by Big Blast FurnaceSpecification
Steel Billet Manufactured by Blast Furnace rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Steel Bloom Manufactured by Big Blast Furnace
①How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②What is the advantage of the continue Casting steel Bloom comparing to the die casting steel Bloom?
Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel Bloom The production process 2. Improve the metal yield 3. Improve the quality of the Bloom 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption
Steel Bloom is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into Bloom; The second is the steelmaking system in the production of steel ingot casting Bloom through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.
③How about the Q235 Grades?
Q235:A、B、C、D(GB700-88)
Q235A:C0.14~0.22% Mn0.30~0.65Si≤0.30S≤0.050P≤0.045
Q235B:C0.12~0.20% Mn0.30~0.670Si≤0.30S≤0.045P≤0.045
Q235C:C≤0.18% Mn0.35~0.80Si≤0.30S≤0.040P≤0.040
Q235D:C≤0.17% Mn0.35~0.80Si≤0.35S≤0.040P≤0.035
- Q: What are the different forging methods used for steel billets?
- There are several different forging methods used for steel billets, each with its own advantages and applications. 1. Open Die Forging: This method involves shaping the steel billet between flat dies, allowing for flexibility in design and size. Open die forging is commonly used for larger and more complex parts that require customization, such as shafts, cylinders, and discs. 2. Closed Die Forging: Also known as impression die forging, this method involves shaping the steel billet within a set of dies that contain the desired shape. Closed die forging is ideal for producing high-precision and complex parts with tight tolerances, such as gears, connecting rods, and crankshafts. 3. Upset Forging: Upset forging involves increasing the cross-sectional area of the steel billet by compressing it between dies. This method is commonly used to create short-length parts, such as bolts, screws, and fasteners. 4. Roll Forging: In roll forging, the steel billet is passed through a set of cylindrical rolls that gradually shape it into the desired form. This method is often used to produce long parts with a consistent cross-section, such as bars, rods, and shafts. 5. Press Forging: Press forging utilizes a hydraulic or mechanical press to shape the steel billet. This method offers greater control over the forging process, allowing for precise shaping of intricate parts. Press forging is often employed for manufacturing automotive components, aerospace parts, and tools. 6. Isothermal Forging: Isothermal forging involves heating the steel billet and the dies to the same temperature, reducing the cooling effect during forging. This method allows for greater control over the microstructure and mechanical properties of the final product, making it suitable for producing parts that require high strength and temperature resistance. Each forging method offers unique benefits, allowing steel billets to be shaped into a wide range of products with varying complexity, size, and mechanical properties. The choice of forging method depends on factors such as the desired product, material properties, production volume, and cost considerations.
- Q: How are steel billets measured?
- To ensure accurate dimensions and specifications, various techniques and tools are employed in measuring steel billets. One commonly utilized approach involves the utilization of calipers or micrometers. These tools enable precise measurements of the billet's diameter, length, and other necessary dimensions. Apart from physical measurements, non-destructive testing methods like ultrasonic testing or eddy current testing are also applied to steel billets. These techniques effectively identify any internal defects or inconsistencies within the billet, thus guaranteeing its quality and integrity. Moreover, the mass of steel billets is often determined through weighing. Depending on the size and weight of the billet, different weighing scales or load cells are employed for this purpose. The weight measurement plays a vital role in determining the billet's mass per unit length, which is crucial for calculating its density and other mechanical properties. In summary, the measurement of steel billets is an essential stage in the manufacturing process. It ensures that the billets meet the necessary specifications for further processing and utilization in diverse industries such as construction, automotive, and manufacturing.
- Q: How are steel billets used in the manufacturing of pipeline systems?
- The manufacturing process of pipeline systems relies heavily on steel billets. These billets are essential as they serve as the primary raw material for shaping and forming various pipeline components, including pipes, fittings, and connectors. To initiate the manufacturing process, the steel billets undergo heating to a specific temperature, making them malleable and easier to manipulate. Subsequently, they pass through a series of rolling mills, gradually taking on the desired form and size. This hot rolling process entails applying high pressure to elongate and shape the billets into long cylindrical pipes. Once the initial shaping is complete, the pipes undergo additional processes, such as heat treatment, cutting, and welding, to ensure their strength, durability, and dimensional accuracy. The steel billets used in this process are of utmost importance as they provide the necessary raw material for producing high-quality pipes that can withstand the demanding conditions of pipeline systems. Furthermore, steel billets also play a crucial role in the manufacturing of various pipeline fittings and connectors. By employing techniques like forging, machining, or casting, these billets are shaped and formed into fittings like elbows, tees, reducers, and flanges. These fittings are essential for connecting and joining pipes together, facilitating the proper flow and distribution of fluids or gases within the pipeline system. In conclusion, steel billets are indispensable in the manufacturing of pipeline systems. They serve as the raw material for pipes, fittings, and connectors, guaranteeing the production of durable and high-quality components. Through processes such as hot rolling, heat treatment, cutting, and welding, these billets meet the stringent requirements of pipeline systems.
- Q: Are steel billets prone to corrosion?
- Corrosion is not an inherent issue for steel billets. However, the likelihood of corrosion occurring depends on the specific steel type used and the environmental conditions in which they are placed. For instance, stainless steel billets possess a considerable amount of chromium, resulting in the formation of a protective layer on the surface that greatly enhances their resistance to corrosion. Conversely, carbon steel billets lack this protective layer, leading to increased vulnerability to corrosion. The presence of moisture, oxygen, and particular chemicals can expedite the corrosion process. Therefore, it is essential to handle and store steel billets appropriately, while also applying suitable coatings or treatments to minimize the risk of corrosion.
- Q: What is the role of steel billets in the production of railway wagons?
- Steel billets play a crucial role in the production of railway wagons, serving as the primary raw material for manufacturing various wagon components. Essentially, steel billets are semi-finished steel products that are cast into specific shapes, typically squares or rectangles, and serve as the starting point for further processing. In the production process, steel billets are first heated to a high temperature and then passed through rolling mills to shape them into desired forms such as beams, plates, angles, channels, or other structural components. These components form the structural framework of the wagons, providing strength, durability, and stability. The exceptional strength and ability of steel billets to withstand heavy loads make them ideal for railway applications. They possess excellent mechanical properties, including high tensile strength, ensuring the wagons can endure the stresses and strains experienced during operation. The use of steel billets also allows for flexibility in design and customization, as they can be easily shaped and formed according to specific requirements. Manufacturers can produce railway wagons of various sizes, configurations, and capacities to cater to different transportation needs. Furthermore, steel billets are highly resistant to corrosion, which is particularly important for railway wagons exposed to harsh environmental conditions. This resistance helps maintain the structural integrity of the wagons, preventing premature deterioration and ensuring their long service life. Overall, steel billets are indispensable in the production of railway wagons. They provide the necessary strength, durability, and customization options required for manufacturing robust and reliable wagons that can withstand the demanding conditions of railway transportation.
- Q: What are the different testing methods used for steel billets?
- Some of the different testing methods used for steel billets include visual inspection, ultrasonic testing, magnetic particle testing, eddy current testing, and hardness testing.
- Q: What are the applications of steel billets?
- Steel billets are primarily used as raw material in the production of various steel products such as bars, rods, wire, and seamless tubes. They are also used in the manufacturing of components for automotive, construction, and machinery industries. Additionally, steel billets can be further processed to produce forgings, which are used in heavy machinery and equipment.
- Q: What are the common alloys used in the production of steel billets?
- The common alloys used in the production of steel billets are primarily carbon and manganese. Carbon is added to increase the hardness and strength of the steel, while manganese is added to improve the steel's toughness and hardenability. Additionally, other alloying elements such as silicon, nickel, chromium, and vanadium may be added in smaller amounts to further enhance specific properties of the steel, such as corrosion resistance, heat resistance, or wear resistance. These alloying elements help create a wide range of steel grades with varying characteristics that can be tailored to suit different applications and industries.
- Q: What are the different types of steel billet rolling mills?
- There are several different types of steel billet rolling mills that are used in the steel industry. These mills are designed to roll billets, which are heated steel bars, into various shapes and sizes. Some of the most common types of steel billet rolling mills include: 1. Two-high rolling mills: These mills have two rolls that are positioned one above the other. The billet is passed between the rolls, which apply pressure and shape the steel into the desired form. 2. Three-high rolling mills: In these mills, there are three rolls, with the top and bottom rolls being smaller in diameter compared to the middle roll. The billet is passed through these rolls, and the middle roll applies the majority of the pressure to shape the steel. 3. Four-high rolling mills: These mills have two smaller rolls positioned above two larger rolls. The billet is passed through the smaller rolls first, which shape the steel, and then through the larger rolls to further refine its shape. 4. Cluster rolling mills: In these mills, multiple rolls are arranged in a cluster. The billet is passed through these rolls, which apply pressure from different angles and directions to shape the steel. 5. Tandem rolling mills: These mills consist of multiple stands of rolling mills arranged in a tandem configuration. Each stand of the mill performs a specific shaping operation on the billet, and the billet is passed through each stand in sequence until it achieves the desired shape. 6. Continuous rolling mills: These mills are designed for continuous operation and are used for high-volume production. The billet is continuously fed into the mill, and the rolls apply pressure to shape the steel as it passes through. Each type of steel billet rolling mill has its own advantages and is used for specific applications in the steel industry. The choice of mill depends on factors such as the desired shape and size of the final product, production volume, and the specific requirements of the steel being processed.
- Q: What is Alfa carbon? What is beta carbon?
- Alfa is directly connected with the functional groups of carbon atoms of carbon atoms, such as CH3CH2COOH CH2 in which methylene propionate is Alfa carbon carbon carbon atom is the beta carbon atom is directly connected with the functional groups and the connection of the carbon (around Kazakhstan), such as the CH3CH2COOH CH3 propionic acid methyl carbon is the beta carbon
Send your message to us
Steel Bloom Manufactured by Big Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords