Steel Billets Manufactured by Continue Casting
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Steel Billets Manufactured by Continue Casting
1.Structure of Steel Billets Manufactured by Continue Casting
Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube.
2.Main Features of Steel Billets Manufactured by Continue Casting.
Steel Billets Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
3. Steel Billets Manufactured by Continue Casting Images
4. Steel Billets Manufactured by Continue Casting Specification
Steel Billets Manufactured by Continue Casting rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Steel Billets Manufactured by Continue Casting
We have organized several common questions for our clients,may help you sincerely:
①How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
③What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?And how is the process?
Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption
Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.
- Q: Can steel billets be forged?
- Yes, steel billets can be forged.
- Q: What are the different types of cutting techniques used for steel billets?
- Different cutting techniques are employed for steel billets, depending on the specific requirements of the project. Several commonly used techniques include: 1. Sawing: This traditional and widely utilized method involves cutting through the steel billet using a saw blade. It can be done manually or with automated sawing machines, making it suitable for both small and large billets. 2. Flame Cutting: Also known as oxy-fuel cutting, this technique employs a flame torch to heat the steel to its kindling temperature. Then, a jet of oxygen is introduced to burn through the metal. It is frequently used for cutting thicker billets and can be performed manually or with CNC-controlled equipment. 3. Plasma Cutting: By utilizing a high-velocity jet of ionized gas, plasma cutting melts and blows away the steel. This technique is particularly effective for cutting billets with complex shapes or contours. It is often automated and produces clean and precise cuts. 4. Waterjet Cutting: This technique involves the use of a high-pressure jet of water combined with abrasive particles to cut through the steel billet. It is ideal for materials sensitive to heat, as it minimizes heat-affected zones. Waterjet cutting is capable of handling various thicknesses and shapes of billets. 5. Laser Cutting: Laser cutting employs a high-powered laser beam to melt and vaporize the steel, resulting in a clean and precise cut. It is highly accurate and suitable for cutting intricate shapes and designs. Laser cutting is commonly automated and widely used in industrial settings. Factors such as desired precision, speed, material thickness, and budget must be considered when selecting the most appropriate cutting technique for steel billets. Each technique has its own advantages and limitations, and choosing the right one can significantly impact the quality and efficiency of the cutting process.
- Q: What are the different surface finishes available for stainless steel billets?
- There are several surface finishes available for stainless steel billets, depending on the desired aesthetic appearance and functional requirements. Some of the most common surface finishes for stainless steel billets include: 1. Mill Finish: This is the standard finish produced by the steel mill during the manufacturing process. It has a dull appearance with visible oxidation marks and can vary in smoothness. 2. Hot Rolled: This finish is achieved by heating the stainless steel billet and then rolling it through a series of rollers. It results in a rougher surface with visible scale and a characteristic orange peel texture. 3. Cold Rolled: This finish is obtained by subjecting the stainless steel billet to cold rolling, which reduces its thickness and improves its surface smoothness. It has a slightly reflective appearance and is often used for applications requiring a smooth finish. 4. Brushed Finish: Also known as satin finish, this surface finish is achieved by mechanically brushing the stainless steel billet with abrasive materials. It creates a consistent linear pattern, giving the steel a matte appearance. 5. Polished Finish: This finish involves polishing the stainless steel billet using abrasives to create a smooth and reflective surface. The level of polish can vary from a low-gloss satin finish to a mirror-like, highly reflective finish. 6. Bead Blasted Finish: In this finish, the stainless steel billet is bombarded with tiny glass or ceramic beads under high pressure, which creates a uniform matte texture. It is commonly used for architectural and decorative applications. 7. Electropolished Finish: This surface finish is achieved by immersing the stainless steel billet in an electrolyte bath and applying an electric current. It removes a thin layer of material, resulting in a smooth, reflective surface with improved corrosion resistance. These are just a few examples of the different surface finishes available for stainless steel billets. Each finish has its own unique characteristics and is chosen based on the specific requirements of the application, such as aesthetics, corrosion resistance, and ease of cleaning.
- Q: How do steel billets contribute to the manufacturing of packaging materials?
- Packaging materials manufacturing heavily relies on steel billets, especially those that necessitate strength and endurance. These semi-finished steel products are typically acquired through continuous casting or hot rolling. Steel billets significantly contribute to the production of steel drums, a pivotal aspect of packaging material manufacturing. Steel drums find extensive use in industries like chemicals, petroleum, and food processing for storing and transporting diverse substances. The robustness and rigidity of steel billets make them an ideal choice for manufacturing these drums, guaranteeing the integrity of the packaging remains uncompromised even under the weight and pressure of their contents. Apart from steel drums, steel billets are also indispensable in the creation of metal cans. Metal cans enjoy broad application in packaging food, beverages, and other consumer goods. They create an excellent barrier against moisture, light, and oxygen, thereby preserving and safeguarding the packaged items. Steel billets are employed in fabricating the can bodies, lids, and bottoms, imparting requisite strength and stability to withstand the pressure during canning and transportation. Furthermore, steel billets play a vital role in manufacturing steel straps and bands for securing and bundling packages. These straps effectively secure heavy and bulky items, preventing shifting or damage during transit. The high tensile strength of steel billets ensures the straps can adequately hold packages together, providing stability and protection. Moreover, steel billets are occasionally utilized in producing corrugated steel sheets. These sheets are commonly employed in manufacturing heavy-duty packaging materials like crates and pallets. Corrugated steel sheets possess excellent strength and rigidity, making them suitable for transporting heavy items over long distances. Steel billets undergo a series of processes, such as rolling, cutting, and shaping, to transform into these sheets, ensuring the final product meets the necessary specifications. In conclusion, steel billets play a pivotal role in packaging material manufacturing. Their strength, durability, and versatility make them ideal for producing steel drums, metal cans, straps, and corrugated steel sheets. By utilizing steel billets, manufacturers can create packaging materials capable of meeting the demands of diverse industries, ensuring the safe and secure transportation of goods.
- Q: How are steel billets inspected for hardness?
- Steel billets are inspected for hardness using a non-destructive testing method called ultrasonic testing. This involves the use of high-frequency sound waves that are transmitted through the billet. The reflected sound waves are then analyzed to determine the hardness of the steel. This method allows for accurate and reliable hardness inspection without causing any damage to the billet.
- Q: What are the different types of steel billet welding processes?
- Various industries commonly use several different types of steel billet welding processes. These processes include the following: 1. SMAW (Shielded Metal Arc Welding), also known as stick welding, utilizes a flux-coated electrode that is manually fed into the welding pool. It is a versatile and widely employed method for welding steel billets. 2. GMAW (Gas Metal Arc Welding), commonly referred to as MIG welding, involves a continuously fed wire electrode and a shielding gas to protect the weld pool. Due to its efficiency and ease of use, it is a popular choice for welding steel billets. 3. FCAW (Flux-Cored Arc Welding) is similar to GMAW, but instead of a solid wire, it uses a tubular electrode filled with flux. This process is often favored for outdoor or windy conditions due to the flux's superior protection against atmospheric contamination. 4. SAW (Submerged Arc Welding) entails feeding a consumable electrode and a granular flux into the weld zone, while the arc remains submerged beneath a layer of flux. It is commonly applied for welding large steel billets because of its high deposition rates and deep penetration capabilities. 5. GTAW (Gas Tungsten Arc Welding), also known as TIG welding, utilizes a non-consumable tungsten electrode and a shielding gas to safeguard the weld pool. This precise and high-quality welding process is suitable for thin steel billets or applications that require exceptional weld aesthetics. 6. ESW (Electroslag Welding) is a highly efficient process employed for welding thick steel billets. It involves melting a consumable electrode and the base metal in a molten slag pool, which provides protection and acts as a filler material. 7. LBW (Laser Beam Welding) utilizes a high-energy laser beam to melt and join steel billets together. It is a precise and fast welding process commonly used in industries such as automotive and aerospace. Each of these welding processes has its own advantages and limitations. The choice of process depends on factors such as the type and thickness of the steel billet, desired weld quality, production requirements, and cost considerations.
- Q: How are steel billets used in the manufacturing of marine components?
- Due to their strength, durability, and versatility, steel billets are indispensable raw materials utilized in the production of marine components. Essentially, steel billets are semi-finished steel products that are cast into specific shapes, typically squares or rectangles, via continuous casting. These billets serve as the initial stage for a variety of marine components. Hot rolling is a primary method employed in the manufacturing of marine components using steel billets. In this process, the steel billet is heated to high temperatures and then passed through a series of rollers to shape it into the desired form. This can involve transforming the billet into rods, bars, beams, or other structural shapes commonly utilized in marine applications. Forging is another technique employed in the manufacturing of marine components using steel billets. This process involves heating the billet to high temperatures and subsequently applying pressure to shape it into the desired form. Forging is commonly employed to manufacture marine components such as propeller shafts, crankshafts, and other high-strength parts that necessitate precise shaping and exceptional mechanical properties. Furthermore, steel billets can be utilized in the manufacturing of marine components through the process of machining. Machining entails the removal of material from the billet using various cutting tools to create intricate shapes and features. This method is commonly employed to produce marine components such as valves, fittings, and other precision parts that require meticulous tolerances and intricate designs. In conclusion, steel billets play a pivotal role in the manufacturing of marine components. Their strength, durability, and versatility make them an ideal raw material for producing various marine parts through processes such as hot rolling, forging, and machining. By utilizing steel billets, manufacturers can ensure that the marine components they produce are capable of withstanding the harsh conditions and demanding requirements of the marine environment.
- Q: What are the different types of steel billets available?
- There are several different types of steel billets available, each with its own unique properties and uses. Some of the most common types include: 1. Carbon Steel Billets: These are made primarily of iron and carbon, with trace amounts of other elements. They are known for their high strength and durability, making them suitable for a wide range of applications such as construction, automotive, and machinery manufacturing. 2. Alloy Steel Billets: As the name suggests, these billets are made by adding various alloying elements such as chromium, nickel, or manganese to the carbon steel. This enhances the mechanical properties of the steel, making it more resistant to corrosion, wear, and heat. Alloy steel billets are commonly used in the production of tools, gears, and high-strength components. 3. Stainless Steel Billets: These billets contain a minimum of 10.5% chromium, which gives them excellent corrosion resistance. Stainless steel billets are widely used in industries such as food processing, chemical, and medical, where hygiene and resistance to rust are crucial. 4. Tool Steel Billets: Designed for applications requiring high hardness, wear resistance, and toughness, tool steel billets are often used in the production of cutting tools, dies, and molds. They are made by adding elements such as tungsten, vanadium, or molybdenum to carbon steel, resulting in a material capable of withstanding extreme conditions. 5. Low Alloy Steel Billets: These billets contain small amounts of alloying elements, typically less than 5%, such as manganese, silicon, or copper. They offer improved strength, toughness, and weldability compared to carbon steel, making them suitable for structural applications in construction and engineering. 6. Microalloyed Steel Billets: Also known as HSLA (High-Strength Low-Alloy) steel, microalloyed steel billets contain small amounts of niobium, vanadium, or titanium. This results in a fine-grained microstructure and enhanced strength, allowing the production of lighter and more efficient structures in industries such as automotive and aerospace. These are just a few examples of the different types of steel billets available. Each type has its own specific properties and applications, and choosing the right type depends on the intended use and desired characteristics of the final product.
- Q: What are the properties of high-quality steel billets?
- High-quality steel billets are sought after for their desirable properties in various applications. Chiefly, these billets boast a high degree of purity, containing minimal impurities like sulfur, phosphorus, and other non-metallic elements. This purity contributes to the overall strength and performance of the steel. Another crucial property of high-quality steel billets is their uniform internal structure. This means that the grains within the billet are evenly distributed, resulting in consistent mechanical properties throughout the material. This uniformity enhances the steel's strength, toughness, and durability. High-quality steel billets also demonstrate excellent dimensional accuracy. They possess precise and consistent dimensions, which are vital for subsequent processing and manufacturing operations. This dimensional accuracy ensures that the billets can be easily formed, rolled, forged, or machined into their intended final shapes. Moreover, high-quality steel billets exhibit a superior surface finish. They are devoid of defects like cracks, voids, or inclusions on their surfaces. This smooth and defect-free surface allows for better heat transfer, improved corrosion resistance, and an enhanced aesthetic appearance of the final steel products. Lastly, high-quality steel billets showcase excellent metallurgical properties. They possess a well-controlled chemical composition, which determines their specific mechanical and physical characteristics. These properties can be tailored to meet the requirements of different applications, such as high strength, high ductility, or resistance to extreme temperatures. To summarize, high-quality steel billets possess properties such as purity, uniform internal structure, dimensional accuracy, excellent surface finish, and desirable metallurgical properties. These properties make them ideal for a wide range of applications, including the construction, automotive, aerospace, and manufacturing industries.
- Q: What are the main factors affecting the corrosion resistance of steel billets?
- The main factors affecting the corrosion resistance of steel billets include the composition of the steel, presence of impurities, environmental conditions (such as humidity and temperature), exposure to corrosive substances, surface finish, and protective coatings.
Send your message to us
Steel Billets Manufactured by Continue Casting
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords