• Steel Bloom/Billet Manufactured by Blast Furnace System 1
  • Steel Bloom/Billet Manufactured by Blast Furnace System 2
Steel Bloom/Billet Manufactured by Blast Furnace

Steel Bloom/Billet Manufactured by Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Steel Bloom/Billet Manufactured by Blast Furnace

 

1.Structure of Steel Bloom/Billet Manufactured by Blast Furnace

 

Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of Steel Bloom/Billet Manufactured by Blast Furnace.

Steel Billets Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3. Steel Bloom/Billet Manufactured by Blast Furnace Images

 

 

Steel Bloom/Billet Manufactured by Blast Furnace

Steel Bloom/Billet Manufactured by Blast Furnace

 

 

 

 

4. Steel Bloom/Billet Manufactured by Blast Furnace Specification

Steel Bloom/Billet Manufactured by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of Steel Bloom/Billet Manufactured by Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?

Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption

Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.

 

Q: What are the different types of steel billet handling equipment?
There are several different types of steel billet handling equipment used in various stages of the steel production process. These equipment are designed to efficiently move and transport steel billets, which are semi-finished metal products used for further processing. 1. Overhead Cranes: Overhead cranes are commonly used in steel mills and foundries for the handling and transportation of steel billets. These cranes have a high lifting capacity and can move billets from one location to another within the facility. 2. Mobile Cranes: Mobile cranes are versatile and can be used for handling steel billets in both indoor and outdoor environments. They are equipped with hydraulic systems for lifting and maneuvering heavy loads. 3. Forklifts: Forklifts are commonly used in warehouses and storage facilities to handle steel billets. They have forks at the front that can be raised and lowered to lift and move the billets. 4. Grab Buckets: Grab buckets are used for handling bulk materials, including steel billets. They have a bucket-like structure that can be opened and closed to grab and release the billets. These are often used in ports and shipping yards for loading and unloading billets from ships. 5. Conveyor Systems: Conveyor systems are used for continuous movement of steel billets along a predefined path. They can be used to transport billets between different stages of the production process or to load and unload them from trucks or trains. 6. Roller Tables: Roller tables are used for transferring steel billets from one conveyor or machine to another. They typically consist of a series of rollers that allow for smooth and controlled movement of the billets. 7. Magnetic Lifters: Magnetic lifters use an electromagnetic field to lift and transport steel billets. They are particularly useful when handling ferrous materials, as the magnetic force allows for secure gripping and easy movement. 8. Palletizers: Palletizers are used to stack and organize steel billets on pallets. They can automatically arrange the billets in a specific pattern, making them suitable for storage or transportation. Each type of equipment has its own advantages and is used in specific applications based on the requirements of the steel production process. The selection of the appropriate handling equipment depends on factors such as the size and weight of the billets, the distance they need to be transported, and the specific needs of the facility.
Q: How are steel billets shaped into other forms?
A process known as hot rolling is used to transform steel billets into different forms. This process involves feeding the steel billet through heated rollers, which compress and mold it into the desired shape. To begin, the steel billet is heated to a high temperature in a furnace. This heat treatment makes the steel more malleable and easier to shape. Once the billet has reached the desired temperature, it is then sent into a rolling mill. Within the rolling mill, the billet undergoes a series of passes through rollers that apply pressure and force to shape the steel. These rollers come in various shapes and sizes depending on the desired outcome. As the billet passes through the rollers, it gradually takes on the desired form, such as sheets, bars, or beams. The rolling process not only shapes the steel but also improves its mechanical properties. It refines the grain structure, enhances strength and toughness, and eliminates any internal defects. This makes the steel more suitable for a range of applications, including construction, automotive, and machinery. Following the hot rolling process, the steel often undergoes additional processing through cold rolling. This involves passing the steel through cold rollers to further refine its surface finish and dimensions. Additionally, secondary operations like cutting, bending, and welding may be carried out to further shape the steel into the desired end product. In conclusion, hot rolling plays a vital role in transforming steel billets into various forms. It enables the production of a wide range of steel products, each with its own unique shape, size, and mechanical properties. This helps meet the diverse needs of industries worldwide.
Q: What is the role of steel billets in the manufacturing of construction excavators?
Steel billets play a crucial role in the manufacturing of construction excavators. These billets, which are essentially semi-finished steel products in the form of a rectangular solid, serve as the primary raw material for constructing various components of excavators. One key aspect of steel billets is their high strength and durability. The construction industry demands materials that can withstand heavy loads, intense pressure, and harsh working conditions. Steel billets possess these characteristics, making them ideal for manufacturing excavators that are capable of withstanding the rigors of construction sites. During the manufacturing process, steel billets are heated and shaped into various components of the excavator. These components include the mainframe, booms, arms, and buckets – all of which require high-strength materials to ensure structural integrity and longevity. Additionally, steel billets allow for precise customization and fabrication. Manufacturers can mold and shape the billets into specific sizes and dimensions required for different parts of the excavator. This flexibility ensures that the components fit together seamlessly, enhancing the overall performance and functionality of the machine. Furthermore, steel billets provide excellent weldability. As excavators undergo constant stress and movements, welding is a crucial process for joining the various components. Steel billets enable strong and reliable welds, ensuring that the excavator remains structurally sound and capable of performing heavy-duty tasks. Overall, the role of steel billets in the manufacturing of construction excavators is indispensable. Their high strength, durability, customizability, and weldability make them the ideal raw material for constructing the robust and reliable machines that are required for the demanding nature of the construction industry.
Q: 100Q235 steel can only be rolled from billets of Q235?Or a billet can be rolled into Q195~Q215 and other models of steel?Is there a detailed classification of billets? Do you have GB?
According to the specifications are divided into: billets, billets, round billet, rectangular billet and slab. According to the steel grade: Q235, Q195, GCr15 and so on........................
Q: What is the process of heat treatment for steel billets?
To alter the mechanical properties of steel billets, they undergo a process called heat treatment. This process is essential for increasing the steel's hardness, strength, and toughness, making it suitable for various industrial applications. The heat treatment process begins by subjecting the steel billets to controlled heating and cooling cycles. The heating stage involves raising the billets' temperature to a specific range, typically above the steel's critical point. This allows for the transformation of the steel's microstructure. Various methods, such as electric furnaces, gas furnaces, or induction heating, can be used for heating. Once the desired temperature is reached, the billets are held at that temperature for a specified period. This stage, known as soaking or holding, ensures that the heat distribution is uniform throughout the billet and allows for the homogenization of the microstructure. After the soaking stage, the billets undergo controlled cooling, which is equally important as the heating stage. The cooling rate is carefully controlled to achieve the desired properties. Cooling methods such as air cooling, oil quenching, or water quenching can be used. Each method provides different cooling rates and results in different material properties. During the cooling stage, the steel undergoes a phase transformation, resulting in the formation of different microstructures. For instance, rapid cooling through water quenching leads to the formation of martensite, a hard and brittle microstructure, while slower cooling can produce pearlite, a softer and ductile microstructure. After cooling, additional processes such as tempering or annealing may be applied to the steel billets. Tempering involves reheating the steel to a specific temperature and holding it there for a certain period, followed by controlled cooling. This process reduces brittleness and improves toughness and ductility. Annealing is another heat treatment process that involves heating the steel to a specific temperature and slowly cooling it. This process relieves internal stresses, refines the grain structure, and enhances the machinability of the steel. Overall, the heat treatment process for steel billets involves carefully controlled heating, soaking, cooling, and sometimes additional processes to achieve the desired mechanical properties. This process is crucial for enhancing the performance and durability of steel billets, making them suitable for various industrial applications such as construction, automotive, and machinery.
Q: What are the different joining methods used for steel billets?
Different joining methods are utilized for steel billets, depending on the desired outcome and specific application at hand. Welding, brazing, and adhesive bonding are among the most commonly employed techniques. For steel billets, welding is an extensively utilized joining method. This involves melting the edges of the billets and merging them together, with or without the use of a filler material. Arc welding, resistance welding, or gas welding are some of the various processes through which welding can be accomplished. While welding provides robust and enduring joints, it can be a complex process that necessitates skilled operators. Brazing is another joining method employed for steel billets. It entails heating the billets and melting a filler metal with a lower melting point. This molten filler metal then flows between the joint surfaces and solidifies. Brazing offers satisfactory strength and is often employed for joining billets that are challenging to weld due to their composition or thickness. Adhesive bonding, on the other hand, is a non-mechanical joining method that employs adhesives to bond steel billets together. Adhesive bonding offers several advantages, including lightweight joints, uniform stress distribution, and the ability to join dissimilar materials. It is a versatile method that can accommodate billets of various shapes and sizes. However, adhesive bonding may not provide the same level of strength as welding or brazing, and its effectiveness can be influenced by environmental factors such as temperature and humidity. Additional joining methods employed for steel billets encompass mechanical fastening, such as bolting or riveting, as well as thermal joining methods like diffusion bonding or friction welding. Each joining method possesses its own advantages and limitations, and the choice of method relies on factors such as specific application requirements, material properties, and cost considerations.
Q: How are steel billets tested for strength?
To ensure the quality and appropriateness of steel billets for different uses, they undergo various strength tests. One commonly employed method is the tensile strength test, which involves applying a controlled pulling force to a sample of the billet until it breaks. The maximum force exerted during this test determines the billet's tensile strength. Another crucial test is the hardness test, which evaluates the billet's resistance to indentation. This procedure utilizes a hardness tester that applies a known force to the billet's surface and measures the resulting indentation's depth. The hardness value obtained from this test aids in determining the billet's strength and its ability to endure wear and tear. Additionally, steel billets may also undergo impact testing, in which a pendulum strikes the billet, measuring the energy absorbed during fracture. This test assesses the billet's toughness and its capacity to withstand sudden shocks or impacts. Moreover, ultrasonic testing is frequently conducted to identify any hidden flaws or inconsistencies within the billet. This non-destructive testing method employs high-frequency sound waves to detect internal defects like cracks, voids, or inclusions that may weaken the billet and jeopardize its strength. By combining these tests with other quality control measures, steel billets are thoroughly examined for strength and suitability in various industrial applications, including construction, automotive, and manufacturing.
Q: How are steel billets used in the manufacturing of food processing equipment?
Steel billets are indispensable for the production of food processing equipment. These semi-finished steel products serve as the raw material for making various components and parts needed in the construction of food processing machinery. First and foremost, steel billets are utilized to construct the main structural frame of the equipment. The strength and durability of steel make it perfect for providing the necessary stability and support for the entire machinery. By cutting and shaping the billets to the desired dimensions, a solid framework is formed, ensuring that it can endure the demanding requirements of industrial food processing. Additionally, steel billets are also employed in the manufacturing of specific components within the equipment. For example, they are used to create cutting blades, grinding discs, and mixing paddles, which are vital in the food processing process. These components must be sturdy and resistant to wear and corrosion, and steel billets offer the ideal material to meet these requirements. Moreover, steel billets are often chosen for constructing food processing equipment that requires high levels of hygiene and cleanliness. Particularly, stainless steel billets are favored in such applications due to their inherent resistance to rust and corrosion. These billets are used to fabricate parts that come into direct contact with food, such as storage tanks, conveyors, and mixing chambers, ensuring that the food processing equipment is safe and hygienic. Furthermore, steel billets are employed in the manufacturing of heat exchangers and boilers used in food processing. These billets are designed to withstand high temperatures and pressure, making them suitable for applications that involve cooking, sterilization, or pasteurization of food products. To conclude, steel billets play a critical role in the production of food processing equipment. From providing structural support to fabricating specific components, they contribute to the creation of robust, efficient, and hygienic machinery that is essential for the food industry.
Q: How do steel billets contribute to the overall energy efficiency of a structure?
There are several ways in which steel billets enhance the energy efficiency of a structure. To begin with, steel is an incredibly durable material that can withstand the test of time. Consequently, structures constructed using steel billets have a longer lifespan, which reduces the frequency of maintenance and repairs. As a result, energy consumption and costs decrease over time. Furthermore, steel boasts excellent heat and electricity conductivity. This characteristic facilitates the efficient distribution of thermal energy throughout the structure, thereby reducing the need for additional heating or cooling systems. Steel structures are proficient at regulating internal temperature and minimizing energy loss, resulting in improved energy efficiency. Moreover, steel manufacturing processes have become increasingly energy-efficient in recent years. Modern techniques involve recycling scrap steel, utilizing electric arc furnaces, and implementing advanced technologies to minimize energy consumption during the production of steel billets. This emphasis on energy efficiency during the manufacturing stage translates into reduced environmental impact and energy savings throughout the lifespan of the structure. Additionally, steel structures can be designed to optimize natural lighting and ventilation. This reduces reliance on artificial lighting and mechanical ventilation systems. Incorporating features like large windows, skylights, and well-designed air circulation systems enables steel structures to minimize the need for energy-consuming lighting fixtures and HVAC systems, further enhancing energy efficiency. In conclusion, steel billets contribute to the overall energy efficiency of a structure through their durability, thermal conductivity, and energy-efficient manufacturing processes. By opting for steel as a building material, structures can benefit from reduced maintenance requirements, efficient temperature regulation, and minimized energy consumption. This leads to long-term energy savings and a more sustainable built environment.
Q: How do steel billets contribute to the manufacturing of telecommunications equipment?
The manufacturing of telecommunications equipment heavily relies on steel billets as they supply the essential raw material for various components and structures. These billets, typically composed of carbon steel, act as semi-finished products that undergo further processing to achieve specific shapes and sizes required for telecommunications equipment. A significant contribution of steel billets to the manufacturing of telecommunications equipment is their role as the base material for constructing towers and masts. These structures are crucial for antenna and satellite dish installation, facilitating the transmission and reception of signals within telecommunications networks. Steel billets are shaped and welded to create robust and long-lasting towers capable of withstanding diverse environmental conditions. Furthermore, steel billets find application in the production of enclosures and cabinets housing telecommunication equipment. These enclosures safeguard the equipment against external factors like dust, moisture, and vandalism, ensuring optimal functioning and longevity. Steel billets are transformed into panels, frames, and chassis, which are then assembled to form resilient enclosures capable of enduring harsh environments. Moreover, steel billets contribute to the manufacturing of telecommunications equipment by being employed in the production of cable trays and supports. These components are essential for organizing and routing cables, providing an efficient infrastructure for telecommunications systems. Steel billets are rolled and shaped into various forms, such as channels and angles, to produce sturdy cable trays and supports capable of withstanding the weight and stress of multiple cables. Additionally, steel billets are utilized in the fabrication of connectors and brackets for telecommunications equipment. These small yet vital components establish necessary connections and provide support for different devices and modules within telecommunications systems. Steel billets are subjected to machining, drilling, and shaping processes to create reliable connectors and brackets, ensuring proper functionality and stability. In conclusion, steel billets have an indispensable role in the manufacturing of telecommunications equipment due to their provision of essential raw material for various components and structures. Their strength, durability, and versatility make them an ideal choice for creating robust and reliable equipment capable of meeting the demands of modern communication networks.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords