• Square Steel Billet Q235 Grade Prime Quality 2# System 1
  • Square Steel Billet Q235 Grade Prime Quality 2# System 2
  • Square Steel Billet Q235 Grade Prime Quality 2# System 3
  • Square Steel Billet Q235 Grade Prime Quality 2# System 4
  • Square Steel Billet Q235 Grade Prime Quality 2# System 5
  • Square Steel Billet Q235 Grade Prime Quality 2# System 6
Square Steel Billet Q235 Grade Prime Quality 2#

Square Steel Billet Q235 Grade Prime Quality 2#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 Grade Prime Quality 2#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 Grade Prime Quality 2#

Main Feature Square Steel Billet Q235 Grade Prime Quality 2#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 Grade Prime Quality 2#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 Grade Prime Quality 2#


Specifications of Square Steel Billet Q235 Grade Prime Quality 2#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 Grade Prime Quality 2#

FAQ of Square Steel Billet Q235 Grade Prime Quality 2#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q: How do steel billets compare to other metal billets?
Steel billets are frequently regarded as superior to other metal billets because of their distinctive properties and characteristics. One of the primary advantages of steel billets is their exceptional strength and durability. With a high tensile strength, steel is resistant to deformation and can withstand heavy loads and stresses. Furthermore, steel billets exhibit excellent thermal conductivity, enabling efficient heat transfer. This characteristic proves particularly advantageous in industries like construction and automotive, where effective heat dissipation is vital for optimal performance and longevity of the final product. Steel billets also boast a high melting point, enabling them to endure extreme temperatures without compromising their structural integrity. This makes them suitable for applications involving exposure to high heat, such as in furnaces or engines. Moreover, steel billets possess the ability to be easily formed and shaped into various sizes and dimensions, rendering them highly versatile for a wide array of applications. They can be rolled, forged, or extruded, allowing manufacturers to create diverse products tailored to specific requirements. Furthermore, steel billets possess excellent corrosion resistance, particularly when combined with protective coatings or treatments. This makes them ideal for outdoor applications or environments where they may come into contact with moisture or chemical substances. In terms of cost-effectiveness, steel billets are often more economical compared to other metal billets like aluminum or titanium. This is due to the abundant availability of iron ore, the primary component of steel, and the efficiency of steel production processes. In conclusion, steel billets possess a unique combination of strength, durability, thermal conductivity, versatility, and cost-effectiveness that distinguishes them from other metal billets. These qualities make steel billets highly sought after in a broad range of industries, including construction, automotive, manufacturing, and infrastructure development.
Q: What is the standard tolerance for steel billet dimensions?
The specific industry and application can cause variation in the standard tolerance for steel billet dimensions. Generally, the standard tolerance for steel billet dimensions ranges from ±0.005 to ±0.010 inches (±0.13 to ±0.25 mm). These tolerances ensure that the steel billets meet the necessary specifications and standards. It is worth mentioning that different industries and applications might have their own distinct tolerances based on their unique standards and requirements. Thus, it is vital to refer to the relevant industry or application-specific standards to determine the exact tolerance for steel billet dimensions.
Q: What are the environmental impacts of steel billet production?
The production of steel billets, which are semi-finished steel products, can have various environmental impacts. One significant environmental impact is the emission of greenhouse gases during the steel manufacturing process. The production of steel billets involves the melting of iron ore, which releases carbon dioxide (CO2) into the atmosphere. CO2 is a major contributor to global warming and climate change. Another environmental impact of steel billet production is the consumption of natural resources. The steel industry requires significant amounts of water and energy to produce billets. The extraction and processing of raw materials, such as iron ore and coal, can also lead to habitat destruction and disruption of ecosystems. Furthermore, the production of steel billets can result in air and water pollution. The combustion of fossil fuels during the manufacturing process releases various pollutants, including sulfur dioxide (SO2) and nitrogen oxides (NOx), which contribute to acid rain and respiratory problems. Additionally, the discharge of wastewater from steel production can contain heavy metals and other contaminants, which can pollute rivers and harm aquatic life. Steel billet production also generates solid waste, such as slag and dust, which can pose challenges for waste management. These waste materials may contain toxic substances and require proper handling and disposal to prevent environmental contamination. To mitigate the environmental impacts of steel billet production, various measures can be taken. The adoption of cleaner technologies, such as energy-efficient furnaces and recycling processes, can help reduce energy consumption and emissions. Implementing rigorous environmental management systems and investing in pollution control technologies can also minimize air and water pollution. Additionally, promoting the use of recycled steel and sustainable sourcing of raw materials can help conserve natural resources and reduce the environmental footprint of steel billet production.
Q: How are steel billets used in the production of railway components?
Steel billets are used in the production of railway components by being heated and molded into specific shapes, such as rails, sleepers, and fasteners. These billets serve as the raw material that is further processed and refined to create durable and strong components that can withstand the heavy loads and stresses of railway operations.
Q: What are the main factors affecting the dimensional tolerances of steel billets?
The dimensional tolerances of steel billets can be influenced by various factors. One of the main factors is the manufacturing process itself. The method used to produce the billets, such as casting or hot rolling, can impact the final dimensions. For example, casting processes may introduce variations in the cooling rate, which can affect the overall shape and size of the billets. Another important factor is the initial quality of the raw material. The composition and homogeneity of the steel used to produce the billets can contribute to dimensional variations. Impurities or uneven distribution of alloying elements can lead to inconsistencies in the size and shape of the billets. The temperature during the manufacturing process is also a significant factor. High temperatures can cause thermal expansion, leading to dimensional changes in the billets. Cooling rates and control of the cooling process are critical to maintaining the desired tolerances. The design and condition of the equipment used in the manufacturing process can also impact the dimensional tolerances. Proper maintenance and calibration of machinery are essential to ensure consistent and accurate production. Finally, external factors such as handling and transportation can affect the dimensional tolerances of steel billets. Improper handling or rough transportation conditions can cause physical deformations or damage to the billets, leading to variations in their dimensions. Overall, the dimensional tolerances of steel billets are influenced by factors such as the manufacturing process, raw material quality, temperature control, equipment condition, and handling and transportation practices. Attention to these factors is crucial to achieving the desired dimensional accuracy in steel billets.
Q: What are the different types of tests conducted on steel billets?
Steel billets undergo various tests to assess their quality and suitability for different applications. These tests play a crucial role in determining the mechanical properties, chemical composition, and overall integrity of the billets. 1. Analyzing Chemical Composition: The chemical composition of the steel billets is examined to ensure compliance with specified standards and requirements. This analysis measures the levels of carbon, manganese, silicon, sulfur, and phosphorus, among other elements. 2. Tensile Strength Evaluation: The tensile test assesses the ability of the steel billets to withstand pulling forces without breaking. It measures parameters such as tensile strength, yield strength, and elongation. 3. Determining Hardness: The hardness test evaluates the steel billets' resistance to wear, deformation, and penetration. It involves different hardness tests such as Brinell, Rockwell, and Vickers. 4. Assessing Impact Resistance: The impact test measures the toughness and capacity of the steel billets to absorb energy under sudden loading or impact conditions. It helps determine their resistance to fracture and cracking. 5. Ultrasonic Inspection: This non-destructive test employs high-frequency sound waves to detect internal flaws or defects in the steel billets. It is a valuable method for identifying cracks, voids, and inclusions that may compromise the billets' structural integrity. 6. Verifying Dimensions: The dimensional inspection ensures that the steel billets meet the specified dimensional requirements, including length, width, and thickness. This verification confirms their suitability for intended applications and subsequent manufacturing processes. 7. Macroscopic Examination: This visual inspection involves magnified examination of the steel billets' surface and internal structure. It helps identify visible defects like cracks, porosity, segregation, or irregularities. 8. Microscopic Examination: By using a microscope, the microscopic examination analyzes the microstructure of the steel billets. It provides insights into grain size, presence of phases, and any abnormalities that may affect the steel's properties. Collectively, these tests guarantee that the steel billets meet the required quality standards and possess the necessary mechanical properties for their intended applications. They ensure the safety, reliability, and performance of steel billets in industries like construction, automotive, aerospace, and manufacturing.
Q: What is the composition of steel billets?
Steel billets are solid, semi-finished products that are typically rectangular in shape and are used as raw material in the production of various steel products. The composition of steel billets can vary depending on the specific grade and type of steel being produced. However, in general, steel billets are primarily made up of iron and carbon, with trace amounts of other elements. The main component of steel billets is iron, which typically makes up the majority of the composition. Iron provides the structural strength and durability to the steel. Carbon is another important element present in steel billets, as it enhances the hardness and strength of the steel. The amount of carbon present in the billets determines the type of steel being produced, such as low carbon steel, medium carbon steel, or high carbon steel. In addition to iron and carbon, steel billets also contain small amounts of other elements. These elements may include manganese, silicon, sulfur, phosphorus, and various alloying elements such as chromium, nickel, and molybdenum. These trace elements are added to steel billets to improve specific properties, such as corrosion resistance, toughness, and heat resistance. It is important to note that the composition of steel billets can vary significantly depending on the intended application and specific requirements. Different industries and manufacturers may have their own proprietary blends or specifications for steel billets. Therefore, it is crucial to consult the appropriate standards and specifications to determine the precise composition of steel billets for a given application.
Q: How are steel billets used in the production of industrial valves?
Industrial valves rely on steel billets as a vital element in their production. These billets serve as the primary material for manufacturing valve bodies, which constitute the main structural component of the valve. To initiate the production process, steel billets undergo heating in a furnace, raising them to a specific temperature. This heating process is crucial, as it renders the billets malleable and easily moldable into the desired valve body design. Once the billets attain the necessary temperature, they are transferred to a forging press, a specialized machine. In this press, significant pressure is applied to the heated billet, causing it to assume the shape of a valve body. This forging process ensures that the valve body possesses strength, durability, and the ability to endure high pressures and temperatures encountered in industrial applications. Following the forging process, the valve bodies undergo machining to achieve the final shape and dimensions. This involves the utilization of cutting tools to eliminate any surplus material and refine the surface finish. The machined valve bodies then undergo a quality inspection to guarantee compliance with the required specifications and standards. After the valve bodies reach the desired condition, they undergo additional processes like heat treatment and surface coating. These treatments enhance their strength, resistance to corrosion, and overall performance. Consequently, the valves become capable of withstanding harsh operating conditions and enjoy a prolonged service life. In conclusion, steel billets are of utmost importance in the production of industrial valves. They undergo heating and forging to create the valve bodies, which serve as the foundational structure of the valves. Through subsequent processes like machining, heat treatment, and surface coating, the billets transform into high-quality valves that effectively regulate the flow of fluids or gases in diverse industrial applications.
Q: What are the main factors affecting the dimensional stability of steel billets?
The dimensional stability of steel billets can be influenced by various factors. These factors include temperature, cooling rate, composition, mechanical stresses, heat treatment, and manufacturing techniques. Firstly, temperature plays a significant role in the dimensional stability of steel billets. Depending on the temperature they are exposed to, the billets can undergo thermal expansion or contraction. To minimize dimensional changes, it is important to carefully control the temperature during the manufacturing process and subsequent cooling stages. Secondly, the rate at which the steel billets cool down after being heated also affects their dimensional stability. Rapid cooling can result in internal stresses and cause warping or distortion, while slow cooling can lead to uneven dimensional changes. Thirdly, the chemical composition of the steel billets is a crucial factor. Different alloying elements, impurities, and carbon content can influence the behavior of the material during heating and cooling. Higher carbon content, for example, increases the likelihood of warping or distortion. Moreover, mechanical stresses from handling, transportation, or machining processes can impact the dimensional stability of steel billets. Excessive bending, twisting, or pressure can cause permanent deformation or residual stresses, thus affecting overall dimensional stability. Furthermore, the heat treatment process also plays a role in the dimensional stability of steel billets. Different heat treatment methods can introduce internal stresses or phase transformations that may alter the billet's dimensions. Lastly, the manufacturing techniques used during the production of steel billets can have an impact on their dimensional stability. Inadequate control or inconsistencies in casting, rolling, or forging processes can result in variations in the billet's dimensions. Considering and controlling these factors is crucial to ensure the dimensional stability of steel billets. Any dimensional changes can have consequences for subsequent processing steps and the overall quality of the final product.
Q: What are the different surface treatments available for steel billets?
There are several surface treatments available for steel billets, including shot blasting, pickling, phosphating, and galvanizing. Shot blasting involves propelling abrasive materials at high speeds to remove rust and scale from the surface. Pickling involves immersing the billets in an acid solution to remove oxide layers and impurities. Phosphating applies a layer of phosphate coating to enhance corrosion resistance and improve paint adhesion. Galvanizing involves applying a zinc coating to protect the surface from corrosion.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords