• Square Steel Billet Q235 Grade Prime Quality 2# System 1
  • Square Steel Billet Q235 Grade Prime Quality 2# System 2
  • Square Steel Billet Q235 Grade Prime Quality 2# System 3
  • Square Steel Billet Q235 Grade Prime Quality 2# System 4
  • Square Steel Billet Q235 Grade Prime Quality 2# System 5
  • Square Steel Billet Q235 Grade Prime Quality 2# System 6
Square Steel Billet Q235 Grade Prime Quality 2#

Square Steel Billet Q235 Grade Prime Quality 2#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 Grade Prime Quality 2#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 Grade Prime Quality 2#

Main Feature Square Steel Billet Q235 Grade Prime Quality 2#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 Grade Prime Quality 2#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 Grade Prime Quality 2#


Specifications of Square Steel Billet Q235 Grade Prime Quality 2#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 Grade Prime Quality 2#

FAQ of Square Steel Billet Q235 Grade Prime Quality 2#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q:How do steel billets compare to other steel products?
Steel billets are raw steel products that are formed into a specific shape, typically a square or rectangular cross-section. They are often used as a starting material for further processing and manufacturing of various steel products. Compared to other steel products, steel billets offer flexibility in terms of size and shape, allowing manufacturers to produce a wide range of end products. Additionally, steel billets possess superior strength and durability, making them an excellent choice for structural and construction applications.
Q:How do steel billets contribute to the infrastructure development?
Steel billets are a crucial component in infrastructure development as they serve as the raw material for manufacturing various steel products used in construction. These billets are used to produce reinforcement bars, beams, columns, and other structural elements that provide strength and stability to buildings, bridges, roads, and other infrastructure projects. By providing a strong and durable foundation, steel billets contribute significantly to the overall safety and longevity of infrastructure, promoting sustainable development and economic growth.
Q:How does the quality of steel billets affect the quality of the final product?
The quality of steel billets significantly impacts the quality of the final product. The composition, purity, and uniformity of the steel billets directly influence the structural integrity, strength, and performance of the finished steel product. Imperfections or impurities in the billets can lead to defects, such as cracks or weak spots, in the final product. Therefore, ensuring high-quality steel billets is crucial in producing a superior final steel product.
Q:What are the potential applications of steel billets in the aerospace industry?
Steel billets have several potential applications in the aerospace industry. They can be used for the manufacturing of various components such as engine parts, landing gear components, and structural elements. The high strength and durability of steel billets make them suitable for ensuring the structural integrity and safety of aircraft. Additionally, their excellent heat resistance properties make them ideal for applications in the aerospace industry where high temperatures are encountered, such as in jet engines.
Q:How are steel billets used in the manufacturing of oil and gas equipment?
Steel billets are a crucial component in the manufacturing of oil and gas equipment. These billets, which are essentially semi-finished steel products, serve as the starting material for the fabrication of various equipment used in the oil and gas industry. One of the primary applications of steel billets is in the production of pipes. Oil and gas pipes need to withstand high pressure, extreme temperatures, and corrosive environments. Steel billets provide the raw material necessary to create seamless or welded pipes that can meet these demanding requirements. The billets are heated, pierced, and elongated through a process called extrusion, which enables the formation of seamless pipes. Alternatively, they can be rolled and welded to create longitudinally welded pipes. Steel billets are also used in the manufacturing of valves, fittings, and flanges. Valves play a critical role in controlling the flow of oil and gas within pipelines and equipment. Fittings, such as elbows, tees, and reducers, are used to connect pipes together or change their direction. Flanges, on the other hand, provide a means of connecting pipes, valves, and other equipment by bolting them together. All of these components require the use of steel billets as the starting material, which are then machined, shaped, and heat-treated to meet the necessary specifications and standards. Furthermore, steel billets are utilized in the fabrication of drilling equipment and offshore structures. Drilling equipment, including drill bits, drill collars, and drill pipes, are essential for oil and gas exploration and extraction. These components are subjected to intense forces and harsh conditions, making the use of high-quality steel billets crucial to ensure their strength and durability. Offshore structures, such as platforms and rigs, also require steel billets to construct the framework and support systems that can withstand the challenging marine environment. In summary, steel billets are indispensable in the manufacturing of oil and gas equipment. They serve as the raw material for pipes, valves, fittings, flanges, drilling equipment, and offshore structures. By starting with high-quality steel billets, manufacturers can produce durable and reliable equipment that can withstand the demanding conditions of the oil and gas industry.
Q:What are the different surface treatments for improved corrosion resistance in steel billets?
Steel billets can undergo different surface treatments to enhance their resistance to corrosion. These treatments aim to establish a protective barrier on the steel's surface, preventing corrosive agents from reaching the metal beneath. Some commonly used surface treatments for improved corrosion resistance in steel billets include: 1. Hot-dip galvanizing: Immersing the steel billets in molten zinc creates a galvanized coating, which is a zinc-iron alloy. This coating offers excellent corrosion resistance and prolongs the lifespan of the steel billets. 2. Electroplating: Through electroplating, a thin layer of metal such as zinc or nickel is applied to the steel billets using an electric current. This layer acts as a protective barrier against corrosion and provides an attractive finish. 3. Powder coating: By applying a dry powder mixture of resin and pigment to the steel billets and heating it, a durable and corrosion-resistant layer is formed. Powder coating is available in various colors and finishes. 4. Paint coatings: Applying corrosion-resistant paint to steel billets creates a protective barrier that hinders moisture and corrosive agents from reaching the steel. Multiple layers of paint can be added for enhanced durability and longevity. 5. Passivation: Passivation is a chemical process that eliminates free iron and contaminants from the steel billets' surface. This process prevents corrosion and encourages the formation of a protective oxide layer. Passivation is often combined with other surface treatments like electroplating or powder coating to enhance corrosion resistance. It is important to consider factors such as the billets' operating environment, desired lifespan, and cost considerations when choosing a surface treatment for improved corrosion resistance. A thorough evaluation of specific requirements and professional consultation are crucial in determining the most suitable treatment option.
Q:What are the different steelmaking processes used for producing steel billets?
There are several different steelmaking processes used for producing steel billets. These processes vary in terms of their efficiency, cost-effectiveness, and the quality of the steel produced. Some of the commonly used steelmaking processes for producing steel billets include: 1. Electric Arc Furnace (EAF): This process involves melting recycled steel scrap using an electric arc. The EAF process is known for its flexibility, as it can use a wide range of steel scrap and produce steel with different compositions. It is also considered more environmentally friendly compared to other processes. 2. Basic Oxygen Furnace (BOF): The BOF process involves blowing oxygen into the molten iron, which helps remove impurities and control the composition of the steel. This process is commonly used for producing large quantities of steel and is known for its high productivity. 3. Induction Furnace: The induction furnace process uses electromagnetic induction to heat the steel scrap. It is commonly used for small-scale steel production and is known for its efficiency and precise temperature control. 4. Continuous Casting: This process involves pouring molten steel into a water-cooled mold, which solidifies the steel into a billet shape. Continuous casting is known for its high production rates and ability to produce steel with consistent quality. 5. Ingot Casting: In this process, molten steel is poured into molds to produce ingots, which can later be processed into billets. While this process is less commonly used due to its lower efficiency and quality compared to continuous casting, it is still used in certain applications. It is important to note that the choice of steelmaking process depends on various factors, including the desired quality of the steel, production volume, cost considerations, and environmental impact. Each process has its own advantages and limitations, and steel producers carefully select the most suitable process based on their specific requirements.
Q:How are steel billets used in the manufacturing of construction equipment?
Steel billets are used as raw material in the manufacturing of construction equipment, particularly in the fabrication of heavy-duty components such as frames, chassis, and structural supports. These billets are heated, shaped, and machined to create the desired parts, ensuring strength, durability, and stability in construction equipment.
Q:What are the common surface treatments for steel billets?
Common surface treatments for steel billets include hot-dip galvanizing, electroplating, painting, and powder coating.
Q:What are the different types of machining processes used for shaping steel billets?
Shaping steel billets can be achieved through various machining processes. Below are some of the most commonly employed methods: 1. Turning: By rotating the billet against a cutting tool, material is removed from the outer surface. This technique is frequently utilized to produce cylindrical shapes or eliminate excess material from the billet. 2. Milling: Material is removed from the billet's surface using a rotating cutting tool. This process is suitable for creating flat surfaces, slots, or intricate shapes. 3. Drilling: Holes are created in the billet by employing a rotating cutting tool. This can be accomplished manually or with the aid of a drilling machine. 4. Grinding: An abrasive wheel or belt is employed in grinding to eliminate material from the billet's surface. It is commonly used to achieve a smooth and precise finish. 5. Broaching: Broaching involves the use of a toothed cutting tool called a broach to remove material from the billet. This method is often employed to create internal or external splines, keyways, or other specialized shapes. 6. Sawing: Sawing is a cutting technique that utilizes a saw blade to divide the billet into smaller sections or remove excess material. This can be done manually or with the assistance of a sawing machine. These examples illustrate just a few of the machining processes utilized in shaping steel billets. Each process offers unique advantages and is selected based on the specific requirements of the final product.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords