• Hot Rolled Mild Square Steel Billet Q195, Q235 System 1
  • Hot Rolled Mild Square Steel Billet Q195, Q235 System 2
  • Hot Rolled Mild Square Steel Billet Q195, Q235 System 3
Hot Rolled Mild Square Steel Billet Q195, Q235

Hot Rolled Mild Square Steel Billet Q195, Q235

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Mild Square Steel Billet Q195, Q235 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Mild Square Steel Billet Q195, Q235 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

-The Square Steel is normally used as structure steel.

-Row material for other structure steel like steel angles, channels, I-beams, H-beams, etc…

 

Product Advantages:

OKorder's Hot Rolled Mild Square Steel Billet Q195, Q235 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Hot Rolled Mild Square Steel Billet Q195, Q235:

-Standard: GB,

-Grade: Q195/Q235 or equivalent.

Chemical Composition:

-Chemical Composition. Q195

Standard

Grade

Element (%)

GB

Q195

C

Mn

S

P

Si

0.06~0.12

0.25~0.50

≤0.050

≤0.045

≤0.30

-Chemical Composition. Q235

Standard

Grade

Element (%)

GB

Q235B

C

Mn

S

P

Si

0.12~0.20

0.30~0.70

≤0.045

≤0.045

≤0.30

Measures and Tolerances of Square Steel Bar:

(The section of Square Steel Bar)

-The length of a side and the theoretical weight of Square Steel.

Length of a side(a, mm)

Theoretical weight(kg/m)

Length of a side(a, mm)

Theoretical weight(kg/m)

6

0.283

32

8.04

7

0.385

*33

8.55

8

0.502

34

9.07

9

0.636

*35

9.62

10

0.785

36

10.17

11

0.950

38

11.24

12

1.13

40

12.56

13

1.33

42

13.85

14

1.54

45

15.90

15

1.77

48

18.09

16

2.01

50

19.63

17

2.27

53

22.05

18

2.54

*55

23.6

19

2.82

56

24.61

20

3.14

*58

26.4

21

3.46

60

28.26

22

3.80

63

31.16

*23

4.15

*65

33.17

24

4.52

*68

36.3

25

4.91

79

38.49

26

5.30

75

44.16

*27

5.72

80

50.24

28

6.15

85

56.72

*29

6.60

90

63.59

30

7.06

95

70.85

*31

7.54

100

78.50

Notes:

1, The theoretical weights in the list, base on the density of 7.85 g/cm3.

2, The numbers with *mean that they are not regulars or we don’t offer them.

-The allowed tolerance of Square Steel:

Length of a side(mm)

Allowed Tolerance

Group1

Group2

Group3

5.5~7

±0.20

±0.30

±0.40

7~20

±0.25

±0.35

±0.40

20~30

±0.30

±0.40

±0.50

30~50

±0.40

±0.50

±0.60

60~80

±0.60

±0.70

±0.80

80~110

±0.90

±1.0

±1.1

110~150

±1.2

±1.3

±1.1

150~190

――

――

±2.0

190~250

――

――

±2.5

Packaging & Delivery of Hot Rolled Mild Square Steel Billet Q195, Q235:

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks:

1, Tag marks: the tag marks will be tied up to each bundle of the products. The information is usually including supplier’s logo and name, product name, made in China, products’ specifications, the painted color and other information requested by customers.

2, Color marks: we will paint both ends of the bundles of these products to make sure that they are more evident. It’s will be more convenient for the customers to distinguish them at the destination port.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

Transportation:

-The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products usually are transported to the nearest port from the production place.

Payment:

-Invoicing on theoretical weight or actual weight a s customer’s request.

-FOB, CFR or CIF.

FAQ:

Q1: Why buy Hot Rolled Mild Square Steel Billet Q195, Q235 from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: What is the normal tolerance of Hot Rolled Mild Square Steel Billet Q195, Q235?

A3: Normally 3%-5%, but we can also produce the goods according to the customers' requests.

Q:What are the different types of surface finish defects found in steel billets?
There are several types of surface finish defects that can be found in steel billets. Some common defects include scale, pits, cracks, and rough surfaces. Scale is a type of oxidation that forms on the surface of the billet and can cause a rough and uneven texture. Pits are small depressions or cavities that can be caused by impurities or improper handling during production. Cracks can occur due to excessive cooling or rapid temperature changes, leading to structural weaknesses in the billet. Rough surfaces can be caused by improper machining or grinding processes, resulting in an uneven or bumpy finish. These defects can affect the quality and integrity of the steel billets, and it is important to detect and address them to ensure the desired end product.
Q:How are steel billets different from steel bars?
Steel billets and steel bars are commonly used steel products in various industries, but they have some distinct differences. 1. Shape and Size: Steel billets are typically square or rectangular and have larger cross-sectional areas compared to steel bars. They are usually produced in sizes ranging from 100x100mm to 150x150mm or larger. In contrast, steel bars come in various shapes, such as round, square, flat, or hexagonal, and are available in smaller sizes based on their intended application. 2. Manufacturing Process: Steel billets are made through a primary steelmaking process known as continuous casting or ingot casting. This process involves solidifying molten steel into a semi-finished product, which is then further processed into steel bars or other forms. Conversely, steel bars are produced through a secondary steelmaking process called hot rolling or cold drawing. This process entails passing the steel billet through a series of rolling mills or drawing machines to achieve the desired shape and size. 3. Usage: Steel billets are primarily used as raw materials for manufacturing various steel products, including bars, rods, wire, pipes, and structural steel sections. They serve as a starting point for further processing and shaping. On the other hand, steel bars are the finished products used in construction, manufacturing, and other industries. They are commonly utilized in the production of reinforced concrete structures, automotive components, machinery parts, and tools. 4. Composition and Properties: Steel billets and bars are both made from carbon steel or alloy steel, but the specific composition and properties may vary depending on the desired end use. Steel billets are often made from low-carbon or mild steel, which provides good formability and weldability. In contrast, steel bars can be made from a wide range of steel grades, including low carbon, medium carbon, and high carbon steels, as well as alloy steels. The choice of steel grade depends on the desired mechanical properties, such as strength, hardness, and ductility. In summary, steel billets are semi-finished products used as raw materials for manufacturing steel bars and other steel products. They differ from steel bars in terms of shape, size, manufacturing process, usage, and composition.
Q:What are the different types of straightening methods used for steel billets?
Steel billets can be straightened using various methods, depending on specific requirements and desired outcomes. These methods encompass: 1. Roller Straightening: By passing the steel billets through a series of rollers, pressure is applied in different directions to achieve straightness. Rollers can be adjusted to target specific areas that may be bent or twisted. 2. Hydraulic Straightening: Employing hydraulic presses, pressure is exerted on the billets either in a single or multiple directions. Adjustments can be made to attain the desired level of straightness. 3. Heat Straightening: This method involves heating the bent or twisted sections of the steel billets and using hydraulic or mechanical tools to straighten them. The heat softens the steel, simplifying the reshaping process. 4. Hammering: A conventional technique where skilled workers manually reshape the billets using hammers and anvils. This method necessitates a high level of skill and precision to achieve the desired straightness. 5. Magnetic Straightening: Employing magnetic fields, this non-contact method applies forces to the steel billets and straightens them. It is often implemented for smaller and thinner billets to avoid damage or distortion caused by other methods. Each straightening method has its own advantages and limitations. The choice of method depends on various factors, such as billet size and thickness, required level of straightness, and available equipment and resources.
Q:What is the role of steel billets in the manufacturing of automotive frames?
Steel billets play a critical role in the manufacturing of automotive frames. These billets are essentially semi-finished steel products that are used as raw material in various industrial processes. In the automotive industry, steel billets are transformed into automotive frames through a series of manufacturing steps. First and foremost, steel billets are chosen for their high strength and durability. Their composition and mechanical properties make them ideal for supporting the weight and structural integrity of automotive frames. These frames need to withstand various loads, shocks, and vibrations, and steel billets provide the necessary strength and stability. The manufacturing process begins with heating the steel billets to a specific temperature, known as the forging temperature. At this temperature, the billets become malleable and can be easily shaped and manipulated. They are then placed into a forging press or machine, where immense pressure is applied to transform them into the desired shape of the automotive frame. After forging, the frames are usually subjected to heat treatment to enhance their mechanical properties and improve their performance. This process involves heating the frames to a specific temperature and then cooling them rapidly or slowly to achieve the desired hardness, strength, and toughness. Heat treatment also helps in relieving internal stresses and improving the overall structural integrity of the automotive frames. Once the frames are forged and heat-treated, they undergo various finishing processes, such as machining, welding, and surface treatment. Machining involves removing excess material and refining the dimensions of the frame to meet precise specifications. Welding is used to join different components of the frame together, ensuring their structural integrity. Surface treatments, such as painting or galvanizing, are applied to protect the frames from corrosion and enhance their appearance. In summary, steel billets are essential in the manufacturing of automotive frames due to their high strength, durability, and malleability. They provide the foundation for creating sturdy and reliable structures that can withstand the demands of the automotive industry. Through forging, heat treatment, and finishing processes, steel billets are transformed into automotive frames that form the backbone of vehicles, ensuring their safety and performance on the road.
Q:What are the different grades of steel billets?
There are several different grades of steel billets, including low carbon steel, medium carbon steel, high carbon steel, alloy steel, and stainless steel. The specific grade of steel billet used depends on the intended application and desired properties of the final product.
Q:How are steel billets forged into shape?
The process of hot forging is utilized to shape steel billets. It entails heating the billet to a temperature that enables easy manipulation, typically ranging from 1100 to 1250 degrees Celsius. Once heated, the billet is positioned on a die, which is a specially designed tool with a cavity that imparts the desired shape onto the final product. Pressure is exerted on the billet by a large mechanical or hydraulic press, compelling it to fill the die cavity. This pressure induces the steel to flow and take the shape of the die, resulting in the intended form of the forged item. Depending on the product's size and complexity, the pressure applied during forging can reach several thousand tons. Throughout the forging process, the steel billet undergoes plastic deformation, causing its internal structure to rearrange and the metal grains to align. This grain alignment enhances the mechanical properties of the forged product, increasing its strength and durability. To achieve the final dimensions and features, additional operations such as trimming, piercing, or punching may be conducted after the initial shaping. These post-forging operations can be carried out while the steel is still hot or after it has cooled down. Once the desired shape is attained, the forged product is slowly cooled to alleviate any residual stresses and prevent cracking. This cooling process, known as annealing, enhances the metallurgical properties of the steel and improves its overall performance. To summarize, the hot forging process involves heating the steel billet, placing it on a die, applying high pressure to shape it, and subsequently cooling it to optimize its mechanical properties. This process enables the transformation of steel into various intricate shapes, making it a versatile and extensively used material across multiple industries.
Q:How are steel billets used in the production of oil and gas pipelines?
Steel billets are used in the production of oil and gas pipelines as they serve as the raw material for manufacturing pipeline sections. These billets are heated, shaped, and welded to form seamless or welded pipeline pipes. The high strength and durability of steel make it an ideal material for pipelines, providing a reliable and safe means of transporting oil and gas over long distances.
Q:What are the main factors affecting the formability of steel billets?
There are several factors that affect the formability of steel billets, including the composition of the steel, its microstructure, temperature, and strain rate. The composition of the steel is a crucial factor in determining its formability. Elements such as carbon, manganese, and silicon can influence the strength and ductility of the steel. Higher levels of carbon and alloying elements can increase the strength of the steel but may decrease its formability. On the other hand, lower carbon content and higher levels of elements like manganese can enhance the formability of the steel. The microstructure of the steel is another significant factor. The size, distribution, and morphology of the grains in the steel can impact its formability. Finer grains generally provide better formability, as they allow for more uniform deformation during shaping processes. Additionally, the presence of precipitates or inclusions in the microstructure can affect the formability by causing localized stress concentrations. Temperature plays a vital role in the formability of steel billets. Heating the steel to elevated temperatures can increase its ductility and reduce its strength, making it easier to form. This process, known as hot forming, allows for greater deformation without the risk of fracture. However, excessively high temperatures can also lead to excessive grain growth, which can negatively impact formability. Lastly, the strain rate, or the rate at which the steel is deformed, can affect its formability. Higher strain rates generally result in reduced formability as they can lead to strain hardening, where the steel becomes harder and more resistant to deformation. Therefore, controlling the strain rate during forming processes is essential to maintain optimal formability. In conclusion, the main factors affecting the formability of steel billets include composition, microstructure, temperature, and strain rate. By considering these factors, manufacturers can optimize the formability of steel billets to meet specific requirements during shaping processes.
Q:What is the role of steel billets in the manufacturing of machinery?
Steel billets play a crucial role in the manufacturing of machinery due to their versatile nature and desirable properties. These semi-finished steel products are essentially long, rectangular bars that serve as the raw material for producing various machinery components. Firstly, steel billets are known for their strength, durability, and excellent mechanical properties, making them ideal for the construction of heavy-duty machinery. By using high-quality billets, manufacturers can ensure that the resulting machinery will have the strength and structural integrity necessary to withstand the demanding operating conditions and loads. Secondly, steel billets can be easily molded and shaped into different forms and sizes through various manufacturing processes like forging, rolling, or extrusion. This versatility allows machinery manufacturers to create complex components with intricate designs, ensuring precision and functionality. Furthermore, the uniformity and consistency of steel billets contribute to the reliability and performance of machinery. As billets undergo a controlled cooling process during their production, they acquire a uniform microstructure, minimizing the risk of defects and improving the overall quality of the machinery components manufactured from them. Another important aspect is the machinability of steel billets, which refers to their ability to be easily cut, drilled, or shaped using machine tools. This property allows manufacturers to efficiently produce machinery components with precise dimensions and tolerances, saving time and costs in the manufacturing process. Moreover, steel billets can be heat-treated to enhance their mechanical properties, such as hardness, toughness, and resistance to wear or corrosion. This makes them suitable for critical machinery parts that require specific characteristics to ensure optimal performance and longevity. In summary, steel billets are indispensable in the manufacturing of machinery due to their strength, versatility, uniformity, and machinability. They provide the necessary raw material for producing robust and reliable machinery components that can withstand demanding conditions and meet the performance requirements of various industries.
Q:What is the typical composition of steel billets?
The typical composition of steel billets consists of primarily iron and carbon, with small amounts of other elements such as manganese, silicon, and sulfur.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords