• Prime square alloy steel billet 90mm Q235 System 1
  • Prime square alloy steel billet 90mm Q235 System 2
  • Prime square alloy steel billet 90mm Q235 System 3
  • Prime square alloy steel billet 90mm Q235 System 4
  • Prime square alloy steel billet 90mm Q235 System 5
  • Prime square alloy steel billet 90mm Q235 System 6
Prime square alloy steel billet 90mm Q235

Prime square alloy steel billet 90mm Q235

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime square alloy steel billet 90mm Q235

 Prime square alloy steel billet 90mm Q235

Description of Prime square alloy steel billet 90mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime square alloy steel billet 90mm Q235

 

Main Feature of Prime square alloy steel billet 90mm Q235

1. Thickness: ≥20μm

2. Pencil Hardness: 2H

3. 60° specular glossiness of coating: >60

4. 180°bend: ≤3T

5. Impact: ≥9J

6. Salt Fog Resistant: ≥500h

7. Color difference:<0.8δe< span="">


Applications of Prime square alloy steel billet 90mm Q235 

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


  Prime square alloy steel billet 90mm Q235

 

Specifications of Prime square alloy steel billet 90mm Q235

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime square alloy steel billet 90mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
we always fix steel produce in container well to make it safe arrive at destination port 
we always provide best and professional forward service for our buyer 
we always apply 14days free detention for our buyers container in destination
we provide one set After-sales service for our buyer 
we provide China inland steel market price report 
we help our buyer become number one in local market .

Q: How are steel billets inspected for surface defects?
Steel billets are inspected for surface defects using various methods and techniques to ensure the quality and integrity of the material. One common method is visual inspection, where trained inspectors carefully examine the surface of the billets for any visible defects such as cracks, scratches, pits, or uneven surfaces. They use proper lighting and magnification tools to thoroughly inspect the entire surface area. Another method used is dye penetrant testing. In this technique, a liquid dye is applied to the surface of the billets, which is then allowed to seep into any cracks or defects. After a specified time, excess dye is removed, and a developer is applied. The developer draws out the dye from any defects, making them clearly visible and easy to identify. Magnetic particle inspection is another widely used method. In this process, the billets are magnetized, and iron particles are applied to the surface. Any surface defects disrupt the magnetic field, causing the iron particles to gather around the defect, making them clearly visible upon inspection. This technique is particularly effective for detecting defects such as surface cracks. Ultrasonic testing is also commonly employed for inspecting steel billets. High-frequency sound waves are transmitted through the material, and any surface defects or internal flaws cause reflections or echoes. These reflections are detected and analyzed, providing information about the size, location, and type of defect present. Additionally, eddy current testing can be used to inspect steel billets for surface defects. This method involves passing an alternating current through a probe that is placed near the surface of the billet. Any defects or variations in the material's conductivity cause changes in the eddy currents, which can be detected and analyzed to identify surface defects. Overall, steel billets undergo meticulous inspection using a combination of visual, dye penetrant, magnetic particle, ultrasonic, and eddy current testing methods to ensure that any surface defects are identified and addressed, guaranteeing the quality and reliability of the final product.
Q: How do steel billets contribute to the telecommunications industry?
Steel billets are used in the telecommunications industry to manufacture various infrastructure components such as towers, poles, and cables. These components provide the necessary support and stability for the installation of telecommunication equipment, ensuring reliable and efficient communication networks. Steel billets contribute to the industry by providing the raw material needed for the production of these essential infrastructure components.
Q: How are steel billets used in the production of construction equipment?
Steel billets are an integral component in the production of construction equipment. These billets, which are essentially semi-finished steel forms, serve as the raw material for various construction equipment components. They are typically manufactured through a process called continuous casting, where molten steel is solidified in molds to form solid rectangular or square billets. Once steel billets are obtained, they undergo further processing to transform them into the desired construction equipment parts. This involves shaping, cutting, and machining the billets to create components such as gears, shafts, axles, and structural frames. The versatility of steel allows for customization of these components to meet the specific requirements of different construction equipment. The use of steel billets in construction equipment production offers several advantages. Firstly, steel is known for its exceptional strength and durability, making it ideal for heavy-duty applications. By using steel billets, construction equipment manufacturers can ensure that their products can withstand the demanding conditions of construction sites and provide long-lasting performance. Additionally, steel billets can be easily welded, allowing for the assembly of complex structures and components. This welding capability is crucial in the production of construction equipment, where multiple parts need to be securely joined together to form a robust and reliable machine. Furthermore, steel billets offer excellent machinability, meaning they can be easily shaped and formed into the desired dimensions. This allows for precise manufacturing of intricate components, enhancing the overall performance and functionality of the construction equipment. Lastly, steel billets are readily available in a wide range of grades and compositions, enabling manufacturers to select the most suitable steel alloy for their specific construction equipment applications. This flexibility allows for the optimization of the equipment's performance, weight, and cost-effectiveness. In conclusion, steel billets play a vital role in the production of construction equipment by serving as the raw material for various components. Their strength, durability, weldability, machinability, and wide range of available alloys make them an ideal choice for manufacturing construction equipment that can withstand the demanding conditions of construction sites and deliver long-lasting performance.
Q: Can steel billets be used for structural applications?
Structural applications can indeed utilize steel billets. Steel billets are produced through continuous casting or hot rolling, resulting in semi-finished products with a rectangular cross-section. These billets serve as raw material for the production of various shapes and forms, including structural components. Steel billets possess multiple properties that make them suitable for structural applications. Firstly, steel is renowned for its strength and durability, enabling it to withstand heavy loads and resist deformation. Consequently, steel billets are a reliable choice for constructing buildings, bridges, and other infrastructure projects. In addition, steel billets can be easily fabricated into different shapes and sizes to meet specific structural requirements. Techniques such as hot rolling, forging, and extrusion can further process them to produce beams, columns, bars, and other structural elements. Furthermore, steel billets offer excellent weldability, facilitating the joining of individual components to create larger structures. This feature makes them an ideal material for construction projects that commonly involve prefabrication and on-site assembly. Overall, steel billets are widely employed in structural applications due to their high strength, versatility in fabrication, and exceptional mechanical properties.
Q: How are steel billets used in the production of automotive frames?
Steel billets are used in the production of automotive frames as a primary raw material. Billets are essentially long, rectangular-shaped pieces of steel that are heated and then formed into specific shapes through various manufacturing processes. In the case of automotive frames, these billets are typically heated and then passed through a series of dies and rollers to form the desired shape and dimensions. Once the billets are formed into the appropriate shape, they are further processed through cutting, bending, and welding techniques to create the intricate and sturdy structure of an automotive frame. The use of steel billets in the production of automotive frames is preferred due to the high strength and durability properties of steel, which are crucial for ensuring the safety and structural integrity of the vehicles. Moreover, steel billets offer excellent formability and machinability, allowing manufacturers to create complex frame designs that meet the specific requirements of different vehicle models. Additionally, steel is a cost-effective material, making it a popular choice for mass production in the automotive industry. Overall, steel billets play a vital role in the production of automotive frames by providing a strong and reliable foundation for the vehicle's structure. The use of these raw materials, along with advanced manufacturing techniques, ensures that automotive frames are able to withstand various forces and impacts, ultimately contributing to the overall safety and performance of the vehicles.
Q: What are the different types of steel used for manufacturing billets?
There are several different types of steel that are commonly used for manufacturing billets, each with its own unique properties and applications. Some of the most common types of steel used for this purpose include: 1. Mild Steel: This is one of the most widely used types of steel for manufacturing billets. It has a low carbon content and is known for its strength and ductility. Mild steel is often used for general purpose applications where high strength is not required. 2. Carbon Steel: This type of steel contains higher levels of carbon compared to mild steel. It offers improved hardness and strength, making it suitable for applications that require greater resistance to wear and tear, such as tools and machinery components. 3. Alloy Steel: Alloy steel is made by adding various alloying elements, such as manganese, nickel, chromium, or molybdenum, to the base iron. This results in a steel with enhanced properties such as increased strength, durability, and corrosion resistance. Alloy steel billets are commonly used in the automotive, aerospace, and construction industries. 4. Stainless Steel: Stainless steel is a steel alloy that contains a minimum of 10.5% chromium, which provides excellent resistance to corrosion and staining. This makes it ideal for applications that require high levels of hygiene, such as food processing equipment and medical devices. 5. Tool Steel: Tool steel is a type of high-carbon steel that is specifically designed to be used in the production of tools, dies, and molds. It is known for its hardness, wear resistance, and ability to retain its shape at high temperatures. 6. High-Speed Steel: High-speed steel is a type of tool steel that is specifically designed to withstand high temperatures without losing its hardness. It is commonly used for cutting tools, such as drills and milling cutters. These are just a few examples of the different types of steel used for manufacturing billets. The choice of steel will depend on the specific requirements of the application, such as strength, durability, corrosion resistance, and temperature resistance.
Q: How are steel billets used in the manufacturing of tools?
The production of tools relies on the use of steel billets, which serve as the starting material. Steel billets are semi-finished products that have a square or rectangular shape and are made of solid steel. They are created through a process called steelmaking, which involves melting iron ore to produce steel. To manufacture tools, the steel billets undergo a preliminary step of heating to a specific temperature known as the forging temperature. At this temperature, the steel becomes flexible and can be easily shaped. The billets are then shaped using various forging techniques, including hammering, pressing, or rolling, until they take on the desired form of the tool. Once the billets have been forged into the desired shape, they undergo further processing through machining operations. These operations, such as milling, drilling, grinding, or turning, are used to achieve the required dimensions and surface finish. Excess material is removed during this stage, and the tool's shape and features are refined. After the machining process, the tools undergo heat treatment to enhance their mechanical properties. This involves subjecting the tools to specific heating and cooling cycles, which alter their hardness, toughness, and resistance to wear. This step is crucial in ensuring that the tools can withstand the demanding conditions they will encounter during use. Finally, the tools are given a finishing touch and coating to provide protection against corrosion and improve their appearance. This can involve processes such as sandblasting, polishing, and the application of protective coatings like chrome plating or powder coating. In conclusion, steel billets play a vital role in the manufacturing of tools, serving as the raw material that undergoes forging, machining, heat treatment, and finishing. The properties of the steel billets, such as their composition and metallurgical characteristics, contribute significantly to the final quality, strength, and durability of the tools produced.
Q: Can steel billets be used in the production of jewelry?
Due to its composition and properties, steel billets are usually not utilized in jewelry production. Steel, which is primarily made up of iron and carbon and contains additional elements like manganese, chromium, and nickel, possesses strength and durability that make it well-suited for various industrial applications, but not for crafting jewelry. In contrast, jewelry is typically crafted from precious metals like gold, silver, and platinum, which possess unique characteristics that make them suitable for adornment. These metals are easily shaped and molded into intricate designs due to their malleability. Moreover, they have a lustrous appearance and are resistant to tarnishing or corrosion. On the other hand, steel is much harder and less malleable compared to precious metals. It cannot be easily manipulated into the delicate and intricate shapes required for jewelry making. Additionally, steel has a dull gray color that does not offer the desired aesthetic appeal in jewelry. While it is technically possible to create jewelry using steel billets, it is not a common practice due to the aforementioned reasons. Steel is primarily utilized in industries where its high strength and durability are necessary, such as construction, automotive, and machinery manufacturing.
Q: How are steel billets used in the production of structural components?
Steel billets are used in the production of structural components by being heated and molded into desired shapes such as beams, columns, and plates. These billets serve as the starting material, which is then further processed through rolling, forging, or extrusion to create strong and durable structural components used in various industries such as construction, automotive, and aerospace.
Q: What is the weight of a standard steel billet?
The weight of a standard steel billet can vary depending on its dimensions, but typically ranges from 1 to 6 metric tons.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords