• Steel Billet  Hot Rolled  Q235 in Amazing Price System 1
  • Steel Billet  Hot Rolled  Q235 in Amazing Price System 2
  • Steel Billet  Hot Rolled  Q235 in Amazing Price System 3
Steel Billet  Hot Rolled  Q235 in Amazing Price

Steel Billet Hot Rolled Q235 in Amazing Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Steel Billet

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Main Features of Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Steel Billet Images 

 

Steel Billet  Hot Rolled  Q235 in Amazing Price

Steel Billet  Hot Rolled  Q235 in Amazing Price


4. Steel Billet Specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin :China 

Inspection:Third party inspection before loading.

5.FAQ

We have organized several common questions for our clientsmay help you sincerely: 

1) How about your company

 A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

2) How to guarantee the quality of the products

 We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

3) How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

4)I want to buy products, but I can’t find them in your website.

We have some products not listed on the website. If you can’t see what you are looking for, email us and we will work with you to get you what you want.

How about the guaranty for your products?

A: It depends on the working environment. Generally speaking, the guarantee period for safety shoes is 6 months.



Q: Can steel billets be customized in terms of shape and size?
Yes, steel billets can be customized in terms of shape and size. Steel billets are semi-finished products that are typically rectangular in shape and are used as raw material for various manufacturing processes. However, they can be altered to meet specific requirements by undergoing a process known as billet rolling or cross-rolling. During this process, the steel billets are passed through a series of specially designed rolls that apply pressure and force to reshape them. This allows for the customization of the billets into different shapes and sizes, such as square, round, or hexagonal, based on the desired end product. Additionally, the size of the steel billets can also be customized. The initial dimensions of the billets can be adjusted by either increasing or decreasing their length, width, and height. This flexibility in customization enables manufacturers to produce steel billets that best suit their specific production needs. In conclusion, steel billets can indeed be customized in terms of both shape and size through the process of billet rolling. This allows manufacturers to adapt the billets to their desired specifications, enabling them to create a wide range of products using steel as a raw material.
Q: What are the potential applications of steel billets in the textile industry?
Steel billets can be used in the textile industry for various applications such as in the manufacturing of textile machinery, equipment, and components. They can be used to produce durable and sturdy parts like spindles, rollers, frames, and looms, which are essential for efficient textile production. Additionally, steel billets can be used in the construction of textile factories and warehouses, providing strength and stability to the infrastructure.
Q: How are steel billets used in the production of agricultural equipment?
Steel billets are an essential component in the production of agricultural equipment due to their versatility and durability. These billets are semi-finished steel products that are shaped into a solid rectangular form, making them ideal for various manufacturing processes. In the production of agricultural equipment, steel billets are typically used as the raw material for forging, casting, or rolling processes. Forging involves heating the billets to a specific temperature and then shaping them into the desired form using a hammer or press. This process is commonly used to create components such as plowshares, tiller blades, and harrow teeth, which require superior strength and resistance to wear and tear. Casting is another method used in agricultural equipment production, where molten steel is poured into a mold and left to solidify. Steel billets are melted and cast into intricate shapes, allowing manufacturers to create complex components like tractor engine blocks, combine harvester parts, or even agricultural machinery frames. The ability to cast steel billets into various shapes enables the production of customized equipment that meets specific requirements. Rolling is another technique that utilizes steel billets in the production of agricultural equipment. These billets are heated and then passed through a series of rollers to reduce their size and shape them into different profiles, such as bars, rods, or sheets. Rolled steel billets are commonly used in the manufacturing of components like axles, shafts, and brackets, which are crucial for the functionality of agricultural machinery. One of the key reasons steel billets are preferred in agricultural equipment production is their inherent strength and durability. The agricultural industry demands robust machinery that can withstand harsh environments, heavy loads, and repetitive use. Steel billets offer exceptional strength, allowing manufacturers to create equipment that can endure these demanding conditions. Additionally, steel billets can be further strengthened through heat treatment processes, such as quenching and tempering, to enhance their mechanical properties. In conclusion, steel billets play a vital role in the production of agricultural equipment. Their versatility and durability enable manufacturers to create components and machinery that can withstand the challenging conditions of the agricultural industry. Whether used in forging, casting, or rolling processes, steel billets provide the necessary strength and reliability required for efficient and long-lasting agricultural equipment.
Q: What are the potential defects or flaws in steel billets?
Steel billets may experience various defects or flaws that can impact the final product's quality and performance. Some of these defects include the following: 1. Surface imperfections: During manufacturing, steel billets may develop surface cracks, scales, or scratches. These imperfections can weaken the material and compromise its structural integrity. 2. Internal flaws: Inclusions, such as non-metallic impurities or gas bubbles, may be present within the steel billets. These internal flaws can create localized weaknesses and reduce the overall material strength. 3. Segregation: Uneven distribution of alloying elements or impurities can result in segregation, where different areas of the billet have varying chemical compositions. Segregation can lead to inconsistent mechanical properties and decrease material uniformity. 4. Central segregation: This defect occurs when impurities or alloying elements concentrate in the central region of the billet, resulting in a weaker core. Central segregation can cause structural failures and decrease the overall reliability of the steel billet. 5. Shrinkage cavities: During solidification, the contraction of molten metal can lead to the formation of shrinkage cavities in the steel billet. These cavities can weaken the material and compromise its structural integrity. 6. Surface decarburization: High temperatures or improper heat treatment can cause the surface of the steel billet to lose carbon content, resulting in surface decarburization. This defect can reduce the material's hardness and strength. 7. Laminations: Thin, elongated voids or layers known as laminations can form parallel to the billet's surface. These defects can weaken the material and make it susceptible to cracking or failure under stress. 8. Internal fissures: Improper cooling or handling during manufacturing can lead to internal fissures or cracks. These cracks can jeopardize the structural integrity of the steel billet and potentially lead to catastrophic failure. It is crucial to detect and address these defects early on to ensure the quality and reliability of the steel billets. Several non-destructive testing techniques, such as ultrasonic testing or magnetic particle inspection, can be employed to identify and mitigate these potential flaws.
Q: What are the common alloys used in the production of steel billets?
The common alloys used in the production of steel billets are primarily carbon and manganese. Carbon is added to increase the hardness and strength of the steel, while manganese is added to improve the steel's toughness and hardenability. Additionally, other alloying elements such as silicon, nickel, chromium, and vanadium may be added in smaller amounts to further enhance specific properties of the steel, such as corrosion resistance, heat resistance, or wear resistance. These alloying elements help create a wide range of steel grades with varying characteristics that can be tailored to suit different applications and industries.
Q: How are steel billets used in the production of agricultural irrigation systems?
Agricultural irrigation systems necessitate steel billets as a crucial element. These semi-finished steel products are utilized to fabricate diverse components of irrigation systems, including pipes, fittings, and valves. In the manufacturing of irrigation pipes, steel billets are employed as the primary material that undergoes a series of processes to shape seamless or welded pipes. The billets are heated and subsequently passed through a piercing mill, where they are further elongated and molded into a hollow tube. Following this, the tubes are stretched and rolled to attain the desired diameter and thickness. As a result, the steel pipes produced are robust, long-lasting, and resistant to corrosion, making them ideal for agricultural irrigation systems. Moreover, steel billets are employed in the production of fittings and valves for irrigation systems. By shaping and machining steel billets, fittings such as elbows, tees, and reducers are manufactured to meet specific size and shape requirements. These fittings are pivotal in connecting and directing water flow within the irrigation system. Furthermore, steel billets are occasionally used in the fabrication of pump housings and other structural components of irrigation systems. Due to their strength and stability, steel billets provide the necessary support and durability required in these applications. In conclusion, steel billets play an essential role in the production of agricultural irrigation systems. They offer a reliable and robust material for pipes, fittings, valves, and other components. Their usage ensures the longevity and efficiency of these systems, facilitating effective water distribution and irrigation in agricultural fields.
Q: What are the factors that affect the mechanical properties of steel billets?
There are several factors that affect the mechanical properties of steel billets. 1. Chemical composition: The chemical composition of steel, including the levels of carbon, manganese, silicon, and other alloying elements, plays a significant role in determining its mechanical properties. These elements affect the strength, hardness, and ductility of the steel billets. 2. Heat treatment: The heat treatment process, including the temperature and duration of heating and cooling, can greatly influence the mechanical properties of steel billets. Heat treatment techniques such as annealing, quenching, and tempering can be used to enhance the hardness, toughness, and overall strength of the steel. 3. Microstructure: The microstructure of steel, which is determined by factors such as cooling rate and alloying elements, greatly influences its mechanical properties. The presence of different phases, such as ferrite, pearlite, and martensite, affects the strength, ductility, and toughness of the steel billets. 4. Grain size: The size and distribution of grains in the steel billets can impact their mechanical properties. Finer grain sizes are generally associated with improved strength and toughness, while larger grain sizes may result in reduced mechanical properties. 5. Processing conditions: The processing conditions during the production of steel billets, such as the temperature and rate of deformation, can affect their mechanical properties. Factors such as rolling, forging, and extrusion can influence the grain structure and overall mechanical behavior of the steel. 6. Surface condition: The surface condition of steel billets, including the presence of defects such as cracks, voids, or surface contamination, can have a significant impact on their mechanical properties. Surface defects can act as stress concentration points and reduce the overall strength and integrity of the steel. 7. Environmental factors: Environmental conditions, such as temperature, humidity, and exposure to corrosive substances, can affect the mechanical properties of steel billets. Corrosion can lead to reduced strength and structural integrity, while high temperatures can cause softening or thermal degradation of the steel. It is important to consider these factors when designing and manufacturing steel billets to ensure that the desired mechanical properties are achieved for specific applications.
Q: What are the quality standards for steel billets?
Steel billets must meet a set of criteria and specifications known as quality standards to ensure their desired characteristics and properties. These standards are crucial for ensuring the reliability, durability, and safety of the billets throughout their manufacturing and subsequent use in various industries. One primary quality standard for steel billets is their chemical composition. This standard specifies the required levels of different elements, such as carbon, manganese, silicon, sulfur, and phosphorus, present in the billets. The chemical composition directly impacts the strength, hardness, and machinability of the billets. Physical properties of the billets are also essential quality standards. These properties include dimensions, surface finish, and straightness. The dimensions must fall within specified tolerances to ensure compatibility with processes like forging, rolling, or extrusion. The surface finish must be defect-free to maintain the integrity of the billets. Straightness is important for proper alignment and handling during production and fabrication. Mechanical properties are critical quality standards as well. These properties include tensile strength, yield strength, elongation, and impact resistance. The billets must possess sufficient strength and toughness to withstand the forces and stresses they will encounter during manufacturing and in their final applications. Additionally, minimizing or eliminating defects and imperfections is necessary to meet quality standards. Common defects include cracks, inclusions, segregation, and porosity, which can compromise the structural integrity and performance of the billets. Therefore, these defects must be controlled within specified limits. To ensure compliance with quality standards, steel billets undergo various testing and inspection methods. These methods may include chemical analysis, mechanical testing, ultrasonic testing, magnetic particle inspection, and visual examination. By conducting these tests, any deviations from the desired quality standards can be identified, allowing for corrective actions to be taken. Overall, quality standards encompass the chemical composition, physical properties, mechanical properties, absence of defects, and compliance with testing and inspection requirements for steel billets. By adhering to these standards, manufacturers can ensure that the produced billets meet the required specifications and will perform reliably in their intended applications.
Q: What are the safety precautions when handling steel billets?
When handling steel billets, it is important to follow several safety precautions to minimize the risk of accidents and injuries. Firstly, it is crucial to wear appropriate personal protective equipment (PPE) such as safety glasses, steel-toed boots, gloves, and a hard hat. Before handling steel billets, ensure that the work area is clear of any obstacles or debris that could cause trips or falls. Additionally, make sure that the billets are stored and stacked properly to prevent them from falling or shifting unexpectedly. When lifting or moving steel billets, be cautious of their weight and size. Use appropriate lifting equipment such as cranes, forklifts, or hoists to avoid strains or musculoskeletal injuries. Always adhere to the weight limits and load capacities of the equipment being used. Maintain a good grip on the billets to prevent them from slipping or falling. Avoid sharp edges or protruding parts that may cause cuts or puncture wounds. If necessary, use protective covers or padding to prevent contact with sharp or jagged edges. Proper communication is essential when handling steel billets. Ensure that there is clear communication between the workers involved in the process to avoid accidents or mishaps. Use hand signals or radios to communicate effectively, especially in noisy environments. Regularly inspect the steel billets for any defects or damage before handling them. Cracks, rust, or any other issues can compromise the structural integrity of the billets and increase the risk of accidents. If any defects are detected, report them to a supervisor and follow the appropriate procedures for handling or disposing of the billets. Lastly, always be aware of your surroundings and the movements of other workers when handling steel billets. Avoid standing or working in the swing radius of lifting equipment or near moving machinery to prevent being struck or crushed. By following these safety precautions, the risk of accidents and injuries while handling steel billets can be significantly reduced, creating a safer work environment.
Q: How do steel billets contribute to the overall safety of a structure?
Steel billets play a significant role in contributing to the overall safety of a structure in several ways. Firstly, steel billets serve as the raw material for manufacturing steel bars, beams, columns, and other structural components. These components are widely used in construction due to their high strength and durability. By using steel billets as the starting material, the resulting steel products exhibit excellent load-bearing capacity, which enhances the structural integrity of the building. Moreover, steel billets undergo a rigorous manufacturing process that includes various quality control checks. These checks ensure that the billets possess consistent and reliable mechanical properties, such as high tensile strength and impact resistance. As a result, when these billets are used in the construction of a structure, they contribute to its overall safety by providing a reliable and robust framework that can withstand external forces, such as wind, earthquakes, or heavy loads. Additionally, steel billets are often produced using advanced metallurgical techniques, such as controlled cooling or heat treatment, to achieve specific properties required for structural applications. These processes help in improving the microstructure of the steel, reducing internal defects, and enhancing its resistance to corrosion, fatigue, and other forms of degradation. This, in turn, increases the lifespan of the structure and minimizes the risk of structural failure, thus ensuring the safety of the occupants. Furthermore, steel billets can be manufactured with precise dimensions and tolerances, allowing for accurate and efficient construction. This precision in fabrication ensures that structural components fit together seamlessly, reducing the likelihood of gaps, misalignments, or weak points that could compromise the safety of the structure. Lastly, steel billets are highly recyclable, making them an environmentally friendly choice for construction. By opting for steel billets, the construction industry can reduce its carbon footprint and contribute to sustainable development. This focus on sustainability aligns with the overall safety of a structure, as a sustainable approach ensures the long-term stability and resilience of the built environment. In conclusion, steel billets contribute to the overall safety of a structure by providing high-strength, durable, and reliable materials for construction. Their consistent mechanical properties, resistance to external forces, improved microstructure, and precise fabrication ensure a strong and secure framework. Moreover, their recyclability promotes sustainability, further enhancing the long-term safety and integrity of the structure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords