Prime square alloy steel billet 105mm Q235
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Prime square alloy steel billet 105mm Q235
Description of Prime square alloy steel billet 105mm Q235
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Main Feature of Prime square alloy steel billet 105mm Q235
Uncoated CR steel sheet
With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet
With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Prime square alloy steel billet 105mm Q235
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Specifications of Prime square alloy steel billet 105mm Q235
Product | Billet |
Material Grade | SGCC / SGCH / DX51D+AZ, etc |
Thickness | 0.6-3.0mm |
Width | 500-1500mm |
Tolerance | Thickness: +/-0.02mm , Width:+/-2mm |
Zinc-coating | Z30-150g/m2 |
Technique | Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume |
Surface | Dried, Chromated, Unoiled |
Spangle | Regular spangle , small spangle, zero spangle |
ID | 508MM 610MM |
Coil weight | 1-25MT |
Export package | Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed |
FAQ of Prime square alloy steel billet 105mm Q235
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
we always fix steel produce in container well to make it safe arrive at destination port
we always provide best and professional forward service for our buyer
we always apply 14days free detention for our buyers container in destination
we provide one set After-sales service for our buyer
we provide China inland steel market price report
we help our buyer become number one in local market .
- Q: How are steel billets used in the manufacturing of packaging materials?
- Steel billets are used in the manufacturing of packaging materials by being rolled into thin sheets to create metal containers or cans. These billets are first heated and then passed through a series of rolling machines to achieve the desired thickness. These sheets are further processed and shaped to form different types of packaging materials such as cans, boxes, or containers, which provide durability and strength to protect and preserve various products during transportation and storage.
- Q: How are steel billets used in the manufacturing of tooling?
- Steel billets are an essential component in the manufacturing of tooling. Tooling refers to the process of designing and creating tools that are used in various industries for cutting, shaping, or forming materials. Steel billets are semi-finished products that are cast from molten steel and then hot rolled into various shapes and sizes. In the manufacturing of tooling, steel billets serve as the raw material from which the tool is formed. These billets are usually made from high-quality steel alloys that exhibit excellent strength, durability, and wear resistance properties. These characteristics are crucial for tooling applications as they ensure the longevity and performance of the tools. Once the steel billets are obtained, they undergo a series of processes to transform them into tooling components. The first step is to heat the billets to a specific temperature, typically above the recrystallization temperature, which makes the steel more malleable and easier to shape. This process is known as hot working. After heating, the steel billets are shaped into the desired form through various techniques such as forging, extrusion, or rolling. These methods allow the steel to be molded into complex shapes, such as dies or molds, which are commonly used in tooling applications. The shaping process ensures that the tooling components have the necessary dimensions, surface finish, and structural integrity to perform their intended function. Once the tooling components are shaped, they may undergo additional heat treatments to further enhance their mechanical properties. Processes like tempering, annealing, or hardening are commonly used to modify the steel's hardness, toughness, and resistance to wear. These treatments increase the tooling's lifespan and improve its performance in demanding manufacturing environments. Overall, steel billets play a crucial role in the manufacturing of tooling by serving as the starting material for shaping tooling components. The high-quality steel used in billets provides the necessary strength and durability required for tooling applications. By shaping, heat treating, and finishing these billets, manufacturers can create tooling that meets the specific needs of various industries, enabling efficient and precise cutting, shaping, and forming of materials.
- Q: What are the safety precautions in handling steel billets?
- Some safety precautions in handling steel billets include wearing personal protective equipment such as gloves, safety glasses, and steel-toed boots, as well as using proper lifting techniques to avoid strain or injury. It is important to ensure that the work area is clear of any obstacles or debris and to use appropriate tools and equipment when moving or transporting the billets. Additionally, workers should be trained in proper handling procedures and be aware of potential hazards such as sharp edges or unstable stacking arrangements. Regular inspections and maintenance of machinery and equipment involved in handling steel billets are also necessary to prevent accidents or malfunctions.
- Q: What is the drop per minute of the billet temperature at 850?
- Cold rolling is not considered. The initial rolling temperature (surface) of the billet is generally 1000-1150 degrees. Generally, the temperature decreases gradually during the rolling process (a small section of high speed wire has a temperature rising process), usually above 750 degrees
- Q: What are the different surface defects found in stainless steel billets?
- There are several different surface defects that can be found in stainless steel billets. Some of the common surface defects include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of stainless steel during the heating process. It appears as a dark, rough layer and can be easily removed by pickling or passivation. 2. Pitting: Pitting is localized corrosion that appears as small, shallow pits on the surface of the billet. It is caused by chloride ions or other aggressive chemicals and can lead to reduced corrosion resistance. 3. Scratches: Scratches can occur during handling, transportation, or processing of the billet. They are visible as linear marks on the surface and can affect the appearance and integrity of the material. 4. Lamination: Lamination defects occur as thin layers or flakes parallel to the surface of the billet. They are caused by improper rolling or inadequate bonding during the manufacturing process. 5. Inclusions: Inclusions are non-metallic particles or impurities that are embedded in the stainless steel billet. They can affect the mechanical properties and corrosion resistance of the material. 6. Decarburization: Decarburization is the loss of carbon from the surface of the billet during heating. It appears as a light-colored layer and can negatively impact the material's strength and hardness. 7. Cracks: Cracks can occur due to thermal stresses, improper cooling, or mechanical damage. They can be either surface cracks or internal cracks, and can significantly weaken the billet. It is important to detect and address these surface defects to ensure the quality and performance of stainless steel billets in various applications.
- Q: What are the advantages of using steel billets over other materials?
- There are several advantages of using steel billets over other materials. Firstly, steel billets have exceptional strength and durability. Steel is known for its high tensile strength, making it ideal for applications that require load-bearing capabilities. This property allows steel billets to withstand heavy loads and resist deformation, ensuring structural integrity and longevity. Secondly, steel billets offer excellent machinability and formability. Steel is a versatile material that can be easily shaped and molded into various forms, allowing for customization and flexibility in design. This makes it suitable for a wide range of applications across industries, including construction, automotive, and manufacturing. Furthermore, steel billets have superior heat and corrosion resistance. Steel is inherently resistant to heat and can withstand high temperatures without losing its structural properties. This makes it suitable for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Additionally, steel has excellent corrosion resistance, which ensures its longevity and minimizes maintenance costs. Another advantage of steel billets is their recyclability. Steel is one of the most recycled materials globally, with a high recycling rate. This not only reduces the environmental impact of steel production but also makes it a more sustainable choice. Additionally, the recycling process does not compromise the quality or performance of steel, allowing for continuous reuse. Lastly, steel billets offer cost-effectiveness. Despite its numerous advantages, steel remains a cost-effective material compared to other alternatives. Its widespread availability, ease of manufacturing, and recyclability contribute to its affordability. Moreover, the durability and low maintenance requirements of steel billets result in long-term cost savings for users. In conclusion, the advantages of using steel billets over other materials include their exceptional strength, machinability, heat and corrosion resistance, recyclability, and cost-effectiveness. These qualities make steel billets a preferred choice in various industries, ensuring reliable and long-lasting performance.
- Q: What are the main challenges in the supply chain management of steel billets?
- The main challenges in the supply chain management of steel billets include ensuring efficient transportation and logistics, managing inventory levels to avoid stockouts or excess inventory, dealing with fluctuating demand and production uncertainties, maintaining quality standards throughout the supply chain, and effectively collaborating with suppliers and customers to ensure timely delivery and customer satisfaction.
- Q: What is the role of steel billets in the construction of airports and terminals?
- Steel billets play a crucial role in the construction of airports and terminals as they serve as the raw material for manufacturing various structural components. These billets are used to create beams, columns, and other load-bearing elements, providing the necessary strength and durability to support the heavy infrastructure of airports and terminals. Additionally, steel billets are also utilized in the construction of runways, hangars, and other facilities, ensuring the safety and stability of these vital structures.
- Q: How are steel billets used in the production of railway parts?
- The production of railway parts heavily relies on steel billets, which are essential raw materials. These billets are semi-finished steel products that are cast into specific shapes and sizes, usually square or rectangular. They serve as the initial stage in the manufacturing process for various railway components. One of the primary uses of steel billets in railway part production is for manufacturing rails. The billets are heated and then passed through rolling mills to shape them into the desired rail profile. This process, known as rolling, involves applying pressure to the billet, gradually elongating and shaping it into the rail section. The resulting rails are then cut to the required length and undergo further processes like heat treatment and finishing to improve their strength and durability. Apart from rails, steel billets are also vital in the production of other crucial railway components such as wheels, axles, and various structural parts. For instance, billets can be forged or machined to create wheel blanks, which are subsequently processed to achieve the final wheel shape. Similarly, billets can be used to manufacture axles by forging and machining them to meet the desired dimensions and specifications. Furthermore, steel billets can be employed in fabricating different structural parts used in railway infrastructure, including bridges, tunnels, and platforms. These billets are processed using various manufacturing techniques like casting, forging, or machining to produce the necessary components. In conclusion, steel billets play a crucial role in the production of railway parts. Whether it's manufacturing rails, wheels, axles, or structural components, these billets are the starting material that undergoes shaping, heat treatment, and finishing processes to create final railway components that ensure safe and efficient transportation.
- Q: What are the different types of rolling processes used for shaping steel billets?
- Steel billets can be shaped into desired forms using different rolling processes. These processes have been designed to transform raw materials into specific shapes and sizes. One widely used method is hot rolling, which involves heating the steel billet to a high temperature and passing it through a series of rollers. The pressure applied by the rollers causes the billet to elongate and change its shape. Hot rolling is commonly employed to produce large steel products like bars, rods, and plates. Another method is cold rolling, which does not require heating the steel billet. Instead, it is carried out at room temperature or slightly below. Cold rolling is known for its ability to produce accurately dimensioned finished products with a smooth surface. It is often used in the manufacturing of thin sheets, strips, and foils. Ring rolling is a third type of rolling process used for shaping steel billets. It involves rotating the billet between two rollers while exerting pressure. This method is particularly useful for creating seamless rings with hollow centers, which are commonly utilized in applications such as bearings and gears. Furthermore, skew rolling is a process used to shape steel billets into round balls or cylindrical forms. It entails rotating the billet at an angle to the direction of the rollers while applying pressure. Skew rolling finds extensive use in the production of grinding media for the mining and cement industries. In conclusion, the various rolling processes, including hot rolling, cold rolling, ring rolling, and skew rolling, offer distinct advantages and are suitable for specific applications. Each process plays a crucial role in shaping steel billets to meet the requirements of different industries.
Send your message to us
Prime square alloy steel billet 105mm Q235
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords