Prime square alloy steel billet 100mm Q235
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Prime square alloy steel billet 100mm Q235
Description of Prime square alloy steel billet 100mm Q235
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Main Feature of Prime square alloy steel billet 100mm Q235
Uncoated CR steel sheet
With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet
With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Prime square alloy steel billet 100mm Q235
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Specifications of Prime square alloy steel billet 100mm Q235
Product | Billet |
Material Grade | SGCC / SGCH / DX51D+AZ, etc |
Thickness | 0.6-3.0mm |
Width | 500-1500mm |
Tolerance | Thickness: +/-0.02mm , Width:+/-2mm |
Zinc-coating | Z30-150g/m2 |
Technique | Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume |
Surface | Dried, Chromated, Unoiled |
Spangle | Regular spangle , small spangle, zero spangle |
ID | 508MM 610MM |
Coil weight | 1-25MT |
Export package | Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed |
FAQ of Prime square alloy steel billet 100mm Q235
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
we always fix steel produce in container well to make it safe arrive at destination port
we always provide best and professional forward service for our buyer
we always apply 14days free detention for our buyers container in destination
we provide one set After-sales service for our buyer
we provide China inland steel market price report
we help our buyer become number one in local market .
- Q: How are steel billets used in the manufacturing of shafts?
- Steel billets are an integral component in the manufacturing of shafts. Billets are essentially semi-finished steel products that are typically square or rectangular in shape. They are produced through a process called casting, where molten steel is poured into molds and allowed to solidify. In the context of shaft manufacturing, steel billets serve as the starting material. They are heated to a specific temperature to make them more malleable and easier to work with. Once heated, the billets are then subjected to a series of processes such as forging, rolling, or extrusion. Forging involves shaping the heated billet by applying compressive forces using a hammer or a press. This process helps refine the grain structure of the steel, improving its strength and reducing any internal defects. Rolling, on the other hand, involves passing the billet through a series of rollers to gradually shape it into the desired form. It is commonly used for producing long, cylindrical shafts. Extrusion is another technique used in the manufacturing of shafts. In this process, the heated billet is forced through a die using high pressure, resulting in a shaft with a specific cross-sectional shape. This method is particularly useful for producing shafts with complex geometries or intricate details. After the initial shaping process, the shafts are further machined, heat-treated, and finished to achieve the desired dimensions, surface finish, and mechanical properties. Machining involves removing excess material and creating specific features such as keyways or threads. Heat treatment is used to enhance the shaft's strength, hardness, and durability. In summary, steel billets are the raw material in the manufacturing process of shafts. Through various shaping techniques such as forging, rolling, or extrusion, the billets are transformed into the desired shape, size, and properties of the shafts. This ensures that the resulting shafts are strong, reliable, and suitable for their intended applications in industries such as automotive, aerospace, and machinery.
- Q: How do steel billets contribute to the manufacturing of tools and equipment?
- Steel billets are an integral component in the manufacturing of tools and equipment. These billets, which are essentially semi-finished steel products, play a crucial role in shaping and forming the final products used in various industries. Firstly, steel billets are used as raw material in the production of various types of tools and equipment. They serve as the starting point for manufacturing processes such as forging, rolling, and extrusion. These processes involve heating and shaping the steel billets to create the desired form and dimensions of the tools and equipment. Moreover, steel billets offer several advantages that make them suitable for tool and equipment manufacturing. The high strength and durability of steel make it an ideal material for tools that need to withstand heavy loads and harsh conditions. The versatility of steel allows for the production of a wide range of tools and equipment, including cutting tools, machine parts, construction equipment, and automotive components. Additionally, steel billets can be easily machined and formed into complex shapes, enabling the production of intricate tools and equipment that meet specific requirements. The excellent machinability of steel allows for precise cutting, drilling, and milling processes, resulting in accurate dimensions and smooth surfaces. Furthermore, steel billets can be heat-treated to enhance their mechanical properties, such as hardness and toughness. Heat treatment processes like quenching and tempering can significantly improve the performance and longevity of tools and equipment. These processes, combined with the inherent strength of steel, ensure that the final products have the necessary strength, hardness, and wear resistance to perform their intended functions effectively. In summary, steel billets are essential in the manufacturing of tools and equipment due to their raw material capabilities and advantageous properties. They provide a reliable and versatile starting point for the production of various tools and equipment, enabling the creation of durable, precise, and high-performance products that are vital to numerous industries.
- Q: How are steel billets measured?
- To ensure accurate dimensions and specifications, various techniques and tools are employed in measuring steel billets. One commonly utilized approach involves the utilization of calipers or micrometers. These tools enable precise measurements of the billet's diameter, length, and other necessary dimensions. Apart from physical measurements, non-destructive testing methods like ultrasonic testing or eddy current testing are also applied to steel billets. These techniques effectively identify any internal defects or inconsistencies within the billet, thus guaranteeing its quality and integrity. Moreover, the mass of steel billets is often determined through weighing. Depending on the size and weight of the billet, different weighing scales or load cells are employed for this purpose. The weight measurement plays a vital role in determining the billet's mass per unit length, which is crucial for calculating its density and other mechanical properties. In summary, the measurement of steel billets is an essential stage in the manufacturing process. It ensures that the billets meet the necessary specifications for further processing and utilization in diverse industries such as construction, automotive, and manufacturing.
- Q: What is the role of steel billets in the manufacturing of structural steel bridges?
- Steel billets play a crucial role in the manufacturing of structural steel bridges as they serve as the primary raw material for the production of steel beams and other structural components. These billets are heated and then shaped into desired forms through processes like rolling or forging. Their high strength and durability make them ideal for constructing the load-bearing elements of bridges, ensuring the structural integrity and longevity of the final bridge product.
- Q: What are the main factors that determine the profitability of steel billets manufacturers?
- The profitability of steel billets manufacturers is influenced by several key factors. These factors can vary depending on various market conditions and industry dynamics. However, some of the main factors that determine profitability in this sector include: 1. Raw material costs: The cost of raw materials, such as iron ore and scrap metal, is a significant determinant of profitability. Fluctuations in these costs can impact the overall cost structure of steel billet production. Manufacturers with efficient procurement strategies and long-term raw material contracts may have a competitive advantage in managing these costs. 2. Production efficiency: The efficiency of the manufacturing process plays a crucial role in determining profitability. This includes factors such as production capacity utilization, energy consumption, labor productivity, and waste management. Manufacturers that can optimize their operations and minimize costs are more likely to achieve higher profitability. 3. Market demand and pricing: The demand for steel billets is influenced by various factors, including construction activity, infrastructure development, and manufacturing output. Manufacturers that can accurately forecast and meet market demand are better positioned to achieve profitability. Additionally, the ability to negotiate favorable pricing and manage price fluctuations in the market can significantly impact profitability. 4. Competitive landscape: The level of competition within the steel billets manufacturing industry can affect profitability. Manufacturers operating in a highly competitive market may face challenges in maintaining profit margins due to price pressures. Companies that can differentiate themselves through innovation, quality, and customer service may have a better chance of achieving sustainable profitability. 5. Operating costs: Apart from raw material costs, other operating expenses, such as transportation, energy, maintenance, and overhead costs, can impact profitability. Efficient cost management practices, such as implementing lean manufacturing principles and optimizing supply chain logistics, can help reduce operating costs and improve profitability. 6. International trade and tariffs: Steel billets manufacturers are often affected by international trade dynamics and tariffs. The imposition of tariffs on steel imports or exports can disrupt the market and impact profitability. Manufacturers that can adapt to changes in trade policies and diversify their customer base or sourcing locations may be better positioned to mitigate these risks. 7. Currency exchange rates: Steel billets manufacturers that engage in international trade may be exposed to currency exchange rate fluctuations. These fluctuations can impact the cost of imported raw materials or the competitiveness of exported products. Manufacturers that have effective currency hedging strategies or local production capabilities may be better able to manage these risks and maintain profitability. Overall, the profitability of steel billets manufacturers is influenced by a combination of factors, including raw material costs, production efficiency, market demand, competition, operating costs, international trade dynamics, and currency exchange rates. Successful manufacturers in this industry must carefully analyze and manage these factors to achieve sustainable profitability.
- Q: What is the global production capacity of steel billets?
- Accurately estimating the global production capacity of steel billets proves challenging due to its annual fluctuations and susceptibility to factors like market demand, economic conditions, and technological advancements. Nonetheless, the World Steel Association reports that in 2019, the total global production capacity for steel billets stood at around 1.86 billion metric tons. This capacity is distributed among different countries and steel-producing regions, with China leading as the largest producer, trailed by India, Japan, and the United States. It is crucial to acknowledge that these statistics are subject to alteration as the steel industry evolves and grows.
- Q: What are the different types of tests conducted on steel billets?
- Steel billets undergo various tests to assess their quality and suitability for different applications. These tests play a crucial role in determining the mechanical properties, chemical composition, and overall integrity of the billets. 1. Analyzing Chemical Composition: The chemical composition of the steel billets is examined to ensure compliance with specified standards and requirements. This analysis measures the levels of carbon, manganese, silicon, sulfur, and phosphorus, among other elements. 2. Tensile Strength Evaluation: The tensile test assesses the ability of the steel billets to withstand pulling forces without breaking. It measures parameters such as tensile strength, yield strength, and elongation. 3. Determining Hardness: The hardness test evaluates the steel billets' resistance to wear, deformation, and penetration. It involves different hardness tests such as Brinell, Rockwell, and Vickers. 4. Assessing Impact Resistance: The impact test measures the toughness and capacity of the steel billets to absorb energy under sudden loading or impact conditions. It helps determine their resistance to fracture and cracking. 5. Ultrasonic Inspection: This non-destructive test employs high-frequency sound waves to detect internal flaws or defects in the steel billets. It is a valuable method for identifying cracks, voids, and inclusions that may compromise the billets' structural integrity. 6. Verifying Dimensions: The dimensional inspection ensures that the steel billets meet the specified dimensional requirements, including length, width, and thickness. This verification confirms their suitability for intended applications and subsequent manufacturing processes. 7. Macroscopic Examination: This visual inspection involves magnified examination of the steel billets' surface and internal structure. It helps identify visible defects like cracks, porosity, segregation, or irregularities. 8. Microscopic Examination: By using a microscope, the microscopic examination analyzes the microstructure of the steel billets. It provides insights into grain size, presence of phases, and any abnormalities that may affect the steel's properties. Collectively, these tests guarantee that the steel billets meet the required quality standards and possess the necessary mechanical properties for their intended applications. They ensure the safety, reliability, and performance of steel billets in industries like construction, automotive, aerospace, and manufacturing.
- Q: How are steel billets used in the manufacturing of rail tracks?
- Steel billets are used in the manufacturing of rail tracks as they serve as the raw material for the production of rails. These billets are heated and then rolled into the desired shape and size to create the rails. They provide the necessary strength, durability, and stability required to withstand the heavy loads and constant wear and tear experienced by rail tracks.
- Q: Can steel billets be used for making decorative items?
- Yes, steel billets can be used for making decorative items. Steel billets can be shaped, molded, and crafted into various designs and forms to create decorative items such as sculptures, furniture, artwork, and architectural features. The strength and durability of steel make it suitable for these purposes while adding a modern and industrial aesthetic to the decorative pieces.
- Q: What are the different types of heat treatment processes used for steel billets?
- There are several different types of heat treatment processes used for steel billets. Some commonly used methods include annealing, normalizing, quenching and tempering, and case hardening. Each process has its own purpose and is used to achieve specific properties in the steel billets.
Send your message to us
Prime square alloy steel billet 100mm Q235
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords