• Square Steel Billet, Square Bar,  Prime Steel Billet System 1
  • Square Steel Billet, Square Bar,  Prime Steel Billet System 2
  • Square Steel Billet, Square Bar,  Prime Steel Billet System 3
Square Steel Billet, Square Bar,  Prime Steel Billet

Square Steel Billet, Square Bar, Prime Steel Billet

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Square Steel Billet, Square Bar,  Prime Steel Billet at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Square Steel Billet, Square Bar,  Prime Steel Billet are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Square Steel Billet, Square Bar,  Prime Steel Billet are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195/Q235/Q275/20MnSi/3SP/5SP

Certificates: ISO, SGS, BV

size:60*60/90*90/100*100/120*120/150*150

Length: 6m/12m,

Packaging: Export packing, nude packing, bundled

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045 

≤0.045

≤0.35 

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Q: What are the main factors that determine the pricing strategy of steel billets manufacturers?
The pricing decisions made by manufacturers in the steel billets industry are influenced by several crucial factors, which play a significant role in shaping their pricing strategy. Firstly, the cost of raw materials, particularly iron ore and scrap metal, is a key determinant in the pricing strategy. Fluctuations in these material costs can directly impact overall production costs and subsequently affect the pricing of steel billets. Secondly, the production capacity of a steel billets manufacturer is a factor that influences their pricing strategy. Manufacturers with higher production capacity may be able to achieve economies of scale, resulting in lower production costs and potentially more competitive pricing. Moreover, market demand for steel billets is an essential factor in pricing decisions. Higher demand often allows manufacturers to set higher prices, while lower demand may require more competitive pricing strategies to attract customers. Additionally, the level of competition within the steel billets industry is significant in determining pricing strategies. Manufacturers must consider the pricing strategies of their competitors to ensure that they remain competitive in the market. Factors such as market share, product differentiation, and branding can influence a manufacturer's ability to set prices. Transportation and logistics costs also impact pricing decisions. Manufacturers that are closer to raw material sources or major markets may have a cost advantage over those located further away. Transportation costs, including fuel prices, shipping fees, and infrastructure quality, can influence the final pricing strategy. Government regulations, such as import/export duties, taxes, and tariffs, have an impact on the pricing strategy of steel billets manufacturers. These regulations can affect the cost of raw materials or the ability to access certain markets, ultimately influencing pricing decisions. Furthermore, economic factors such as inflation rates, interest rates, and exchange rates can impact the pricing strategy. Manufacturers need to consider these factors to ensure that their prices remain competitive and reflect changes in the overall economic climate. In conclusion, the pricing strategy of steel billets manufacturers is a complex interplay of various factors, including raw material costs, production capacity, market demand, competition, transportation costs, government regulations, and economic factors. Manufacturers must carefully analyze these factors to determine a pricing strategy that maximizes profitability while remaining competitive in the market.
Q: How do steel billets contribute to the manufacturing of marine gear?
Steel billets contribute to the manufacturing of marine gear by serving as the raw material for the production of various components, such as gears, shafts, and bearings. These billets are first heated and then shaped through forging or machining processes to create the desired gear components with high strength and durability. The use of steel billets ensures that the marine gear can withstand the harsh conditions of marine environments, such as corrosion, high loads, and extreme temperatures, ultimately enhancing the performance and reliability of the gear in marine applications.
Q: What are the common defects in steel billets during hot rolling?
Some common defects in steel billets during hot rolling include surface cracks, internal cracks, surface scales, segregation, and surface defects such as pits, scars, and scratches. These defects can affect the quality and integrity of the final product and may require further processing or rejection of the billets.
Q: Are steel billets affected by extreme temperatures?
Yes, steel billets can be affected by extreme temperatures. High temperatures can cause the billets to soften and become more malleable, making them easier to shape or deform. On the other hand, extremely low temperatures can make the steel brittle and prone to cracking or fracturing. Therefore, it is important to carefully control and monitor the temperature conditions during the production and processing of steel billets.
Q: What are the common quality control measures for steel billets?
Some common quality control measures for steel billets include visual inspection for surface defects, dimensional checks to ensure the correct size and shape, hardness testing to verify the desired hardness level, chemical analysis to determine the composition of the steel, and non-destructive testing techniques such as ultrasonic or magnetic particle inspection to detect internal flaws or cracks. Additionally, mechanical property testing, such as tensile or impact testing, may be performed to evaluate the strength and toughness of the billets.
Q: How are steel billets used in the manufacturing of agricultural machinery?
Steel billets are an essential component in the manufacturing of agricultural machinery. These billets, which are semi-finished steel products, serve as the raw material for various parts and components used in agricultural machinery. One of the primary uses of steel billets in the manufacturing process is for forging and casting. Forging involves heating the billets to a high temperature and then shaping them using mechanical pressure, while casting involves pouring molten metal into a mold. Both processes allow for the creation of complex and durable components that are necessary for agricultural machinery. Steel billets are used to manufacture a wide range of agricultural machinery parts, such as engine components, transmission gears, axles, and hydraulic cylinders. These parts require excellent strength, durability, and resistance to wear, which steel billets provide. Additionally, steel's high tensile strength ensures that the machinery can withstand the demanding conditions of agricultural operations. Moreover, steel billets are used for manufacturing the frames and chassis of agricultural machinery. The frames need to be robust to support the weight and withstand the stress and vibrations generated during operation. Steel billets allow for the creation of sturdy and rigid frames that ensure the longevity and structural integrity of the machinery. Furthermore, steel billets are utilized in the production of cutting and harvesting tools, such as blades, discs, and plowshares. The exceptional hardness and sharpness of steel make it an ideal material for these tools, enabling efficient and precise agricultural operations. In summary, steel billets play a crucial role in the manufacturing of agricultural machinery. Their versatility, strength, and durability make them a suitable material for various components and parts, ensuring that the machinery can withstand the demanding conditions of agricultural operations and perform efficiently.
Q: Can steel billets be used in the production of bicycles?
Yes, steel billets can be used in the production of bicycles. Steel is a commonly used material in bicycle manufacturing due to its strength, durability, and affordability. Steel billets can be shaped and manipulated to form various bicycle components such as frames, forks, and handlebars.
Q: What are the different sizes and shapes of steel billets?
Steel billets come in various sizes and shapes, including square, rectangular, and round. The sizes can range from small billets measuring a few inches to larger ones measuring several feet in length and width. The specific size and shape of a steel billet depend on its intended use and manufacturing requirements.
Q: How do steel billets come out?
Two, pig iron and scrap steel1, smelting equipmentA, BOF: top and bottom blowing, blowing, now is widely used in pure oxygen top blown converterB, open hearth:C, electric steelmaking:
Q: What are the main factors affecting the mechanical properties of steel billets?
There are several main factors that can affect the mechanical properties of steel billets. 1. Chemical Composition: The chemical composition of steel, specifically the amounts of carbon, alloying elements, and impurities, plays a significant role in determining its mechanical properties. Higher carbon content usually leads to increased strength but reduced ductility. Alloying elements such as manganese, nickel, and chromium can enhance specific properties like hardness, toughness, or corrosion resistance. 2. Heat Treatment: The heat treatment process, which involves heating and cooling the steel billets under controlled conditions, can greatly influence their mechanical properties. Different heat treatment methods, such as annealing, quenching, and tempering, can alter the microstructure and consequently the hardness, strength, and toughness of the steel. 3. Microstructure: The microstructure of steel, which is determined by the cooling rate during solidification or heat treatment, is another crucial factor. The presence of different phases, grain size, and distribution of alloying elements within the microstructure can significantly affect the steel's mechanical properties. 4. Manufacturing Process: The manufacturing process used to produce steel billets can also impact their mechanical properties. Factors such as casting method, rolling or forging techniques, and the presence of any defects or impurities introduced during production can influence the final properties of the billets. 5. Temperature: Temperature has a considerable influence on the mechanical properties of steel. It can affect the strength, ductility, and toughness of the material. For instance, as temperature decreases, steel tends to become more brittle, whereas at elevated temperatures, it may exhibit reduced strength and increased ductility. 6. Strain Rate: The rate at which a load is applied to the steel billets, known as strain rate, can affect their mechanical properties. High strain rates, such as those experienced during rapid impact or dynamic loading, can result in different behavior and failure mechanisms compared to slower or static loading conditions. It is important to note that these factors are interrelated, and changes in one factor can influence others, leading to a complex interaction and a wide range of possible mechanical properties for steel billets.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords