Steel Billets Q235 China Q235 Q275 Q345 Hot selling Billet Steel
- Loading Port:
- Dalian
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 50000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Steel Billets Q235 China Q235 Q275 Q345 Hot selling Billet Steel
Description
Reference Price:$260/ton Mn 0.3%-0.6%
Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc.
The billet is mainly divided into two kinds from the shape:
Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.
Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. ,
Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.
Processing of Steel Billet
Steel billets are considered fresh and raw, and they must undergo a series of manufacturing processes before they can be used for various purposes. Billets are made by means of freezing molten liquid, and are later exposed to extremely low temperatures in order to allow the metal to take shape and solidify in chemical structure. The temperature manipulates the metal's physical properties, and tones its strength and durability. The subsequent processes provide the metal's curved mold design so that it can fit the allotted space provided by other machines, which complete the finishing procedures.
Images
Technical Data
Size:100*100,120*120,150*150,130*130
Mn: 0.3%-0.6%
C: 1%
Cr:0.1%
Packaging
cargo ship or container
usually container price will add 15USD per ton
RFQ
We have organized several common questions for our clients,may help you sincerely:
1) How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
2) How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
3) How long can we receive the product after purchase?
In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.
4)Do you have your own QC department?
Yes, we have, our QC department will inspect the goods during the process of mass production and after completion of production.
hot sale!!! steel billets/ mild steel bar/ billet steel
(1): High quality steel with reasonable price.
(2): Wide excellent experiences with after-sale service.
(3): Every process will be checked by responsible QC which insures every product's quality.
(4): Professional packing teams which keep every packing safely.
(5): Trial order can be done in one week.
(6): Samples can be provided as your requirements.
If you are interested in our products, please don't hesitate to contact me.
Your any inquiry will be appreciated and we will offer you a rock-bottom price.
- Q: Can steel billets be used in the production of energy-efficient appliances?
- Yes, steel billets can be used in the production of energy-efficient appliances. Steel is a versatile material that is commonly used in the manufacturing of appliances due to its strength and durability. Energy-efficient appliances are designed to consume less energy while performing their intended functions, thereby reducing energy consumption and greenhouse gas emissions. Steel billets can be processed and transformed into various components of energy-efficient appliances such as the outer shells, structural supports, and internal parts. The use of steel in these appliances ensures their longevity and reliability, contributing to their overall energy efficiency. Additionally, steel is a highly recyclable material, meaning that it can be reused or repurposed for other applications at the end of an appliance's life cycle. Recycling steel helps to conserve energy and reduce waste, further supporting the goal of energy efficiency. In summary, steel billets can indeed be utilized in the production of energy-efficient appliances. The strength, durability, and recyclability of steel make it an ideal material choice for manufacturing energy-efficient appliances that contribute to a more sustainable future.
- Q: What are the main factors affecting the corrosion resistance of stainless steel billets?
- The corrosion resistance of stainless steel billets is affected by various factors. These include the composition of the alloy, the presence of impurities, the manufacturing process, and the environment in which the billets are exposed. The alloy composition is crucial in determining the corrosion resistance of stainless steel. The addition of elements like chromium, nickel, and molybdenum enhances its resistance to corrosion. These elements create a protective oxide layer on the surface, acting as a barrier against corrosive agents. Impurities in the stainless steel billets can also impact their corrosion resistance. For instance, the presence of sulfur can lead to the formation of sulfide inclusions, reducing overall corrosion resistance. Therefore, controlling impurities during the manufacturing process is vital for optimal corrosion resistance. The manufacturing process employed to produce stainless steel billets can also affect their corrosion resistance. Factors such as temperature, cooling rate, and the presence of contaminants during production influence the material's microstructure, thus impacting its corrosion resistance. Lastly, the environment in which the stainless steel billets are exposed plays a significant role in their corrosion resistance. Variables like temperature, humidity, pH level, and the presence of corrosive agents like acids or chlorides can expedite the corrosion process. Therefore, considering the specific environmental conditions is crucial when selecting stainless steel billets for a particular application. In conclusion, the corrosion resistance of stainless steel billets is influenced by the alloy composition, impurities, manufacturing process, and environment. By carefully considering these factors, one can select stainless steel billets with optimal corrosion resistance for various applications.
- Q: How are steel billets used in the production of rebar?
- Steel billets are an essential raw material in the production of rebar. Rebar, also known as reinforcing bar, is a steel reinforcement used in concrete structures to provide strength and stability. The process of making rebar begins with the production of steel billets. Steel billets are solid, semi-finished steel products that are typically square or rectangular in shape. They are formed through the casting process, where molten steel is poured into molds and allowed to solidify. Once solidified, the billets are ready to be used in various applications, including the production of rebar. To produce rebar, the steel billets are first heated to a high temperature in a furnace. This process, known as hot rolling, softens the steel and makes it malleable. The heated billets are then passed through a series of rolling mills, where they are shaped into long, cylindrical rods with a specific diameter. During the rolling process, the steel billets are subjected to intense pressure and heat, which helps to align the grains of the steel and increase its strength. The rods are continuously rolled until they reach the desired dimensions and length. After the rolling process, the rods are cooled and cut into standard lengths to be sold as rebar. The resulting rebar is a strong and durable steel reinforcement that is widely used in construction projects. It is typically embedded in concrete structures, such as buildings, bridges, and highways, to enhance their load-bearing capacity and resist tension and bending forces. The use of rebar helps to prevent cracking and failure of concrete structures, ensuring their long-term durability and safety. In summary, steel billets are crucial in the production of rebar as they are transformed through the hot rolling process into long, cylindrical rods. These rods, once cooled and cut, serve as the essential reinforcement in concrete structures, providing strength and stability to the overall construction.
- Q: What are the potential applications of steel billets in the medical sector?
- Steel billets have a wide range of potential applications in the medical sector. One of the key uses of steel billets is in the manufacturing of medical instruments and surgical tools. The high strength and durability of steel make it an ideal material for producing instruments that require precision and reliability. From scalpels and forceps to bone saws and orthopedic implants, steel billets can be transformed into various medical tools that are essential for surgeries and procedures. Additionally, steel billets can be utilized in the production of medical equipment such as hospital beds, wheelchairs, and stretchers. These products require a sturdy and robust material to ensure patient safety and comfort. Steel provides the necessary strength to support the weight of patients and withstand regular usage, making it an excellent choice for such applications. Furthermore, steel billets can be used in the construction of medical facilities and infrastructure. Steel is known for its structural integrity, making it suitable for building hospitals, clinics, and research laboratories. Steel structures offer resistance against earthquakes, fires, and other natural disasters, ensuring the safety of both medical personnel and patients. Moreover, steel billets can be employed in the manufacturing of medical storage systems and cabinets. These storage solutions are crucial for maintaining a sterile and organized environment, preventing cross-contamination, and ensuring the proper storage of medical supplies and equipment. In conclusion, steel billets have numerous potential applications in the medical sector. From the production of surgical instruments and medical equipment to the construction of medical facilities, steel's strength, durability, and reliability make it an invaluable material in enhancing patient care and safety.
- Q: What are the different types of steel billet quality control tests?
- To ensure the integrity and suitability of steel billets for further processing, various types of quality control tests are conducted. These tests play a vital role in maintaining the desired quality standards in the steel industry and detecting any defects or inconsistencies in the billets. Some commonly used tests for steel billet quality control are as follows: 1. Visual Inspection: This test involves visually examining the billets to identify surface defects like cracks, seams, or dents. It is a fundamental form of quality control and can be carried out quickly. 2. Dimensional Inspection: In this test, the dimensions of the billets are measured and compared to specified tolerances. This ensures that the billets fall within the required size range and meet the dimensional requirements for further processing. 3. Chemical Composition Analysis: This test involves analyzing the chemical composition of the steel billets to ensure they meet the specified requirements. It includes determining the percentages of different elements such as carbon, manganese, sulfur, and phosphorus. 4. Mechanical Testing: This test evaluates the mechanical properties of the steel billets, such as tensile strength, yield strength, and elongation. These properties are crucial in determining the billets' suitability for specific applications. 5. Ultrasonic Testing: This non-destructive testing method utilizes ultrasonic waves to detect internal defects like cracks or voids in the billets. It is particularly effective in identifying hidden defects that may not be visible during visual inspection. 6. Magnetic Particle Inspection: This test involves applying a magnetic field to the billets and then introducing magnetic particles to the surface. Any surface or near-surface defects will cause the particles to gather, indicating the presence of a defect. 7. Eddy Current Testing: This method uses electromagnetic induction to detect surface defects or variations in the billets' electrical conductivity. It is useful in identifying cracks, voids, or inconsistencies in the billets' microstructure. 8. Microstructure Analysis: This test involves examining the microstructure of the steel billets under a microscope to assess homogeneity, grain size, and the presence of any undesirable phases. It aids in determining the overall quality and suitability of the billets for further processing. These tests, alongside other specific tests, are an integral part of steel billet quality control. By conducting these tests, manufacturers can ensure that the billets meet the required standards and possess the necessary properties for their intended applications.
- Q: How are steel billets rolled or forged into other shapes?
- Various shapes can be achieved from steel billets through the process of rolling or forging. Rolling entails passing the heated billet through a series of rollers that exert pressure to reshape the material. This method is commonly employed to fabricate long and flat shapes such as sheets, plates, and bars. Before rolling, the billet is heated to a specific temperature to increase its malleability. It is then introduced into the rolling mill, where a pair of rotating rollers applies pressure to reduce its thickness and elongate it. The rollers can have either smooth or grooved surfaces, depending on the desired shape of the end product. The billet undergoes multiple passes through the rollers, gradually diminishing its thickness and increasing its length. This process can be repeated with different sets of rollers to achieve precise dimensions and cross-sectional shapes. Finally, the product is cooled and cut to the desired length. On the other hand, forging involves applying compressive forces to the heated billet in order to shape it into various forms. There are two primary types of forging processes: open-die forging and closed-die forging. In open-die forging, the heated billet is inserted between two flat dies, and pressure is exerted by a hammer or press to deform the material. The billet is repeatedly struck or pressed until it takes on the desired shape. This method is commonly used for the production of large and intricate shapes, such as crankshafts, connecting rods, and turbine discs. Closed-die forging, also referred to as impression-die forging, entails the use of two or more dies with cavities that mirror the desired shape of the final product. The heated billet is positioned between the dies, and pressure is applied to compel the material into the cavities, completely filling them. This process is often employed for the fabrication of smaller and more intricate shapes, such as automotive parts, hand tools, and fittings. Both rolling and forging processes necessitate the heating of the billet to a specific temperature in order to enhance its ductility and facilitate shaping. The choice between rolling and forging depends on factors such as the desired shape, size, and mechanical properties of the final product.
- Q: How do steel billets contribute to the infrastructure development sector?
- Steel billets play a crucial role in the infrastructure development sector by serving as the foundation for various construction projects. These billets are used to produce structural steel products, such as beams, columns, and reinforcement bars, which are essential components in building bridges, highways, buildings, and other infrastructure projects. The strength and durability of steel billets make them ideal for withstanding heavy loads and adverse weather conditions, ensuring the long-term stability and safety of structures. Moreover, their versatility allows for easy fabrication and customization, enabling engineers and architects to design innovative and efficient solutions for infrastructure development. Overall, steel billets provide the necessary strength, reliability, and flexibility to support the growth and sustainability of the infrastructure development sector.
- Q: What is the average production cost of steel billets?
- The average production cost of steel billets can vary depending on various factors such as the location, production scale, raw material costs, energy costs, labor costs, and other operational expenses. However, on a general basis, the average production cost of steel billets can range between $400 to $600 per metric ton. It is important to note that the production cost can fluctuate based on market conditions and the state of the global steel industry. Additionally, factors like technological advancements, efficiency measures, and economies of scale can also influence the production cost of steel billets. It is advisable for companies or individuals looking for accurate and up-to-date information on the average production cost of steel billets to consult industry reports, market analysts, or relevant trade associations. These sources can provide more specific and detailed data tailored to a particular region or market segment.
- Q: What are the main factors affecting the formability of steel billets?
- The main factors affecting the formability of steel billets are the composition and microstructure of the steel, the temperature at which the forming process takes place, and the mechanical properties of the steel, such as its yield strength and ductility.
- Q: What is Alfa carbon? What is beta carbon?
- Alfa is directly connected with the functional groups of carbon atoms of carbon atoms, such as CH3CH2COOH CH2 in which methylene propionate is Alfa carbon carbon carbon atom is the beta carbon atom is directly connected with the functional groups and the connection of the carbon (around Kazakhstan), such as the CH3CH2COOH CH3 propionic acid methyl carbon is the beta carbon
Send your message to us
Steel Billets Q235 China Q235 Q275 Q345 Hot selling Billet Steel
- Loading Port:
- Dalian
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 50000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords