20MnSi Prime Steel Billet 150x150mm 120*120mm
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering 20MnSi Prime Steel Billet 150x150mm 120*120mm at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
20MnSi Prime Steel Billet 150x150mm 120*120mm are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's 20MnSi Prime Steel Billet 150x150mm 120*120mm are durable, strong, and wide variety of sizes.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: 20MnSi
Certificates: ISO, SGS, BV
size:60*60/90*90/100*100/120*120/150*150
Length: 6m/12m,
Packaging: Export packing, nude packing, bundled
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.
Images:
- Q: What are the different quality control measures for steel billets?
- There are several quality control measures that are implemented during the production and inspection of steel billets to ensure their high quality. These measures include: 1. Chemical Composition Analysis: The chemical composition of steel billets is thoroughly analyzed to ensure it meets the required specifications. This analysis involves determining the content of various elements such as carbon, manganese, sulfur, phosphorus, and others. Any deviations from the specified composition can affect the mechanical properties of the billets. 2. Dimensional Inspection: Steel billets undergo dimensional inspection to verify their size, shape, and weight. This involves measuring the length, width, and thickness of the billets using precision instruments and ensuring they meet the specified tolerances. Any deviations from the required dimensions can impact the performance of the billets during subsequent processing. 3. Surface Inspection: The surface of steel billets is inspected for any defects or irregularities. This includes checking for cracks, surface discontinuities, surface roughness, and other imperfections. Surface inspection is typically conducted using visual inspection techniques or non-destructive testing methods such as magnetic particle testing or ultrasonic testing. 4. Mechanical Testing: Mechanical testing is performed to assess the mechanical properties of steel billets. This includes conducting tests such as tensile testing, hardness testing, and impact testing to determine the strength, ductility, toughness, and other mechanical characteristics of the billets. These tests ensure that the billets possess the required mechanical properties for their intended applications. 5. Metallurgical Examination: Metallurgical examination involves studying the microstructure of steel billets through microscopic analysis. This examination helps identify any defects in the metal structure, such as grain size, segregation, inclusions, or improper heat treatment. By assessing the metallurgical properties, the quality control team can ensure that the billets are free from any internal defects that might compromise their structural integrity. 6. Non-Destructive Testing (NDT): Non-destructive testing techniques, such as ultrasonic testing, magnetic particle testing, or eddy current testing, are used to detect internal defects or discontinuities that may not be visible through visual inspection. These methods allow for the detection of flaws without damaging the billets, ensuring their integrity is maintained. 7. Documentation and Traceability: Quality control measures also include maintaining proper documentation and traceability throughout the production process. This includes documenting the results of all inspections, tests, and analyses performed on the steel billets, as well as tracking their origin, processing history, and any relevant certifications. This documentation ensures transparency and enables traceability in case of any quality-related issues. By implementing these quality control measures, steel manufacturers can ensure that the produced billets meet the required specifications, possess the desired properties, and are of high quality, thereby enhancing their reliability and suitability for various applications in industries such as construction, automotive, and manufacturing.
- Q: What are the different heat treatment processes for alloy steel billets?
- There are several different heat treatment processes for alloy steel billets, including annealing, normalizing, quenching, and tempering. Annealing involves heating the billets to a high temperature and then slowly cooling them to relieve internal stresses and improve ductility. Normalizing is similar to annealing but involves air cooling instead of slow cooling. Quenching involves rapidly cooling the billets in a liquid medium, such as oil or water, to increase hardness and strength. Tempering is done after quenching and involves reheating the billets to a specific temperature and then cooling them slowly to reduce brittleness and improve toughness.
- Q: What is the role of steel billets in the manufacturing of structural steel buildings?
- Steel billets are the raw materials used in the manufacturing of structural steel buildings. They undergo various processes such as heating, rolling, and shaping to form different structural components like beams, columns, and trusses. These billets provide the necessary strength, durability, and flexibility required for constructing sturdy and reliable steel structures.
- Q: What is the role of steel billets in the production of sheet metal?
- Steel billets play a crucial role in the production of sheet metal. They are the primary raw material used in the manufacturing process. Steel billets are semi-finished products that are created through the process of casting or hot rolling. They are essentially rectangular or square-shaped solid bars of steel. These billets are produced in various sizes and lengths, depending on the specific requirements of the sheet metal being manufactured. The first step in the production of sheet metal involves heating and shaping the steel billets. They are heated to a high temperature and then passed through a series of rolling mills to reduce their thickness and increase their length. The rolling process involves applying pressure to the billets, which causes them to elongate and become thinner. This continuous rolling process is repeated several times until the desired thickness is achieved. Once the steel billets have been rolled into thin sheets, they are further processed to obtain the final sheet metal product. This can involve various additional steps such as cutting, trimming, and surface treatments to enhance the appearance and properties of the sheet metal. Steel billets are preferred in the production of sheet metal due to their excellent mechanical properties. Steel is known for its strength, durability, and malleability, making it an ideal material for sheet metal applications. The use of steel billets ensures that the resulting sheet metal products possess these desirable properties. In summary, steel billets are the starting point in the production of sheet metal. They undergo a series of heating and rolling processes to transform them into thin sheets of steel. These sheets are then further processed to create the final sheet metal products. The use of steel billets allows for the production of sheet metal with superior mechanical properties, making it a critical component in the manufacturing industry.
- Q: How are steel billets used in the manufacturing of springs?
- Steel billets are used in the manufacturing of springs by being heated and then forged or rolled into the desired shape and size. These billets serve as the raw material for producing high-quality springs, providing the necessary strength and durability required for various applications.
- Q: What are the main factors that determine the sustainability of steel billets production?
- The main factors that determine the sustainability of steel billets production include the source of raw materials, energy efficiency in the production process, waste management, carbon emissions, water usage, and adherence to environmental regulations. Additionally, the implementation of sustainable practices such as recycling, reducing greenhouse gas emissions, and promoting responsible sourcing contribute to the overall sustainability of steel billets production.
- Q: How are steel billets used in the production of shafts?
- Shafts require steel billets as an indispensable component for their production. These billets are semi-finished products that serve as the initial stage for diverse manufacturing processes. In the case of shaft production, steel billets serve as the raw material from which the shafts are formed. The process commences by heating the steel billets to a specific temperature, typically within a furnace. This heating procedure, referred to as "hot working," is of utmost importance as it renders the steel more pliable and easier to mold. Once the billet attains the desired temperature, it is subsequently transferred to either a forging press or a rolling mill. During the forging process, the heated billet undergoes high pressure and is shaped using specialized dies to achieve the desired dimensions for the shaft. This method permits precise control over the shape, size, and surface finish of the shaft. On the contrary, the rolling process entails the billet passing through a sequence of rollers that gradually shape it into a cylindrical form. Rolling is frequently employed for shafts necessitating a consistent cross-section along their length. Following the initial shaping process, the shafts go through additional steps such as heat treatment, machining, and finishing to fulfill the specific requirements of their intended applications. Heat treatment assists in enhancing the mechanical properties of the shaft, rendering it stronger, more durable, and resistant to wear. Subsequently, machining processes such as turning, milling, or grinding are conducted to achieve precise dimensions, smooth surfaces, and accurate tolerances. Altogether, steel billets occupy a pivotal role in the production of shafts as they serve as the starting point for the shaping processes imperative in creating these crucial components. Through meticulous manipulation and refinement, steel billets metamorphose into high-quality shafts utilized in a myriad of industries, including automotive, aerospace, manufacturing, and numerous others.
- Q: What are the potential applications of steel billets in the electronics industry?
- Steel billets can be used in the electronics industry for various applications such as manufacturing electronic enclosures, brackets, and chassis for electronic devices. They can also be utilized for creating structural components and supports in electronic equipment. Additionally, steel billets are commonly used in the production of connectors, terminals, and pins for electrical connections.
- Q: What are the different forging techniques used for steel billets?
- There are several forging techniques used for steel billets, each offering unique advantages and producing different results. Some of the commonly used forging techniques for steel billets include: 1. Open Die Forging: This technique involves placing the steel billet between two flat dies and applying compressive force to shape it. Open die forging allows for a wide range of shapes to be formed, and it is often used for large and complex components. 2. Closed Die Forging: Also known as impression die forging, this technique uses shaped dies that contain impressions of the desired final shape. The steel billet is placed between the dies and compressed to conform to the die cavities. Closed die forging provides precise control over the shape and dimensions of the final product. 3. Roll Forging: In this technique, the steel billet is passed through two or more rotating rolls that exert compressive force to shape the material. Roll forging is commonly used for producing long cylindrical shapes such as bars, rods, and shafts. 4. Upset Forging: This technique involves compressing the steel billet axially to increase its cross-sectional area and reduce its length. Upset forging is often used to create thicker sections or to increase the diameter of the material. 5. Press Forging: Press forging utilizes hydraulic or mechanical presses to apply force to the steel billet, shaping it against the die. This technique allows for precise control over the forging process, making it suitable for producing components with intricate shapes or close tolerances. 6. Swaging: Swaging is a forging technique that involves reducing the diameter of a steel billet by applying radial compressive force using a series of dies. This process is commonly used to produce tapered or pointed components such as pins, bolts, or needles. Each of these forging techniques offers distinct advantages depending on the desired shape, size, and properties of the final product. The choice of forging technique is determined by factors such as part complexity, material properties, production volume, and cost considerations.
- Q: What are the different types of rolling processes used for shaping steel billets?
- There are several different types of rolling processes used for shaping steel billets. These processes are specifically designed to transform the raw material into desired shapes and sizes. One common rolling process used for shaping steel billets is hot rolling. In this process, the steel billet is heated to a high temperature and then passed through a series of rollers. The rollers apply pressure to the billet, causing it to elongate and change shape. Hot rolling is typically used for producing large-sized steel products such as bars, rods, and plates. Another type of rolling process is cold rolling. Unlike hot rolling, cold rolling does not involve heating the steel billet. Instead, it is performed at room temperature or slightly below. Cold rolling is known for its ability to produce finished products with high dimensional accuracy and a smooth surface finish. It is commonly used for manufacturing thin sheets, strips, and foils. A third type of rolling process used for shaping steel billets is ring rolling. Ring rolling involves rotating the billet between two rollers while applying pressure. This process is particularly useful for producing seamless rings with a hollow center, which are commonly used in applications such as bearings and gears. Additionally, there is a process called skew rolling, which is used to shape steel billets into round balls or cylindrical shapes. Skew rolling involves rotating the billet at an angle to the direction of the rollers while applying pressure. This process is widely used in the production of grinding media for mining and cement industries. Overall, these different types of rolling processes offer various advantages and are suited for specific applications. Whether it is hot rolling, cold rolling, ring rolling, or skew rolling, each process plays a crucial role in shaping steel billets into the desired forms required by various industries.
Send your message to us
20MnSi Prime Steel Billet 150x150mm 120*120mm
- Loading Port:
- China main port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords