• Prime quality square alloy steel billet 90mm Q235 System 1
  • Prime quality square alloy steel billet 90mm Q235 System 2
  • Prime quality square alloy steel billet 90mm Q235 System 3
  • Prime quality square alloy steel billet 90mm Q235 System 4
  • Prime quality square alloy steel billet 90mm Q235 System 5
  • Prime quality square alloy steel billet 90mm Q235 System 6
Prime quality square alloy steel billet 90mm Q235

Prime quality square alloy steel billet 90mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 95mm Q235

 Prime quality square alloy steel billet 90mm Q235

Description of Prime quality square alloy steel billet 95mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 90mm Q235

 

Main Feature of Prime quality square alloy steel billet 95mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 95mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 90mm Q235

 

Specifications of Prime quality square alloy steel billet 95mm Q235

Product

Prime quality square alloy steel billet 95mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 95mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q: Are steel billets used in the production of household appliances?
Yes, steel billets are used in the production of household appliances. Steel billets are semi-finished steel products that are used as raw material in various industries, including the manufacturing of household appliances. These billets are heated and then rolled or forged into different shapes and sizes to create components such as sheets, plates, rods, and bars that are used in the production of appliances. Steel is a preferred choice for household appliances due to its strength, durability, and resistance to corrosion. It is commonly used in the production of refrigerators, washing machines, dishwashers, ovens, and many other household appliances.
Q: What is the role of steel billets in the construction of offshore platforms?
Steel billets play a crucial role in the construction of offshore platforms as they are the primary raw material used to fabricate various structural components such as beams, columns, and braces. These billets undergo a series of processes including heating, rolling, and shaping to form the desired structural shapes. Their high strength and durability make them ideal for withstanding the harsh marine environment and supporting the weight of the platform. Ultimately, steel billets serve as the building blocks for offshore platforms, ensuring the structural integrity and safety of these critical structures.
Q: What are the different types of steel billet rolling processes?
There are several different types of steel billet rolling processes that are used in the manufacturing industry. These processes include hot rolling, cold rolling, and warm rolling. Hot rolling is the most common and widely used method for producing steel billets. In this process, the steel billet is heated to a high temperature and then passed through a series of rolling mills to reduce its thickness and shape it into the desired form. The high temperature softens the steel and makes it more malleable, allowing it to be easily shaped and formed. Cold rolling, on the other hand, is a process where the steel billet is rolled at room temperature or slightly below. This process is typically used for producing steel billets with a higher level of precision and a smoother surface finish. Cold rolling also helps to improve the mechanical properties of the steel, making it stronger and more durable. Warm rolling is a combination of hot rolling and cold rolling. In this process, the steel billet is heated to a temperature that is lower than in hot rolling but higher than in cold rolling. The lower temperature helps to preserve the mechanical properties of the steel while still allowing for some shaping and forming. Each of these steel billet rolling processes has its own advantages and disadvantages. Hot rolling is the most cost-effective and efficient method, but it may result in some surface defects. Cold rolling provides a higher level of precision and surface finish, but it is more expensive and time-consuming. Warm rolling offers a balance between the two, but it may not be suitable for all applications. Overall, the choice of steel billet rolling process depends on various factors such as the desired shape and properties of the final product, the production volume, and the cost considerations.
Q: How are steel billets used in the production of bars and rods?
Steel billets are used as a raw material in the production of bars and rods. They are first heated and then passed through a series of rolling mills to be shaped into the desired form. This process increases the strength and durability of the steel, making it suitable for various applications such as construction, manufacturing, and automotive industries.
Q: How are steel billets used in the production of hydraulic cylinders?
Hydraulic cylinders rely on steel billets as a crucial raw material for their production. These billets, which are cylindrical and made of high-quality steel, serve as the starting point for the manufacturing process. To begin, the steel billets are heated in a furnace. This heating process, known as hot rolling, makes the billets more malleable and easier to work with. Once heated, the billets are then passed through a series of rollers, shaping and elongating them to the desired size and form. After the initial shaping, the billets undergo further processing through various machining operations. These operations include drilling, boring, milling, and grinding, among others. By using these machining processes, the necessary features and dimensions for hydraulic cylinders, such as piston and rod bores, mounting holes, and fluid flow ports, are created. Once the machining operations are complete, the billets are subjected to heat treatment to improve their mechanical properties. The specific heat treatment method, either quenching and tempering or annealing, depends on the hydraulic cylinder's requirements. Heat treatment enhances the steel's strength, hardness, and durability, ensuring that the hydraulic cylinder can withstand the high pressures and forces it will encounter during operation. After shaping, machining, and heat treatment, the steel billets are ready for the final assembly stage. Other components, such as pistons, rods, seals, and valves, are added to complete the hydraulic cylinder. These components are carefully integrated with the billets to ensure proper functionality and reliable performance. In conclusion, steel billets are essential for the production of hydraulic cylinders. They undergo heating, shaping, machining, heat treatment, and assembly to form the core structure of the cylinder. This guarantees that the hydraulic cylinder possesses the necessary strength, durability, and precision required for efficient operation in a variety of industrial and mobile applications.
Q: How do steel billets contribute to the manufacturing of furniture and fixtures?
Steel billets are used in the manufacturing of furniture and fixtures as they serve as a raw material for various processes such as forging, casting, and extrusion. They can be shaped and molded into different components, such as frames, legs, and supports, which provide strength, durability, and stability to the furniture and fixtures. Additionally, steel billets can be further processed to create different finishes, such as powder coating or painting, to enhance the aesthetic appeal of the final products.
Q: How are steel billets used in the manufacturing of gears and bearings?
Steel billets are used in the manufacturing of gears and bearings as they serve as the raw material for forging or casting processes. These billets are heated and shaped into the desired form, such as gear blanks or bearing races, using specialized machinery. The high strength and durability of steel make it an ideal material choice for these applications, ensuring the gears and bearings can withstand heavy loads and provide smooth operation.
Q: What are the different surface defects that can occur during steel billet production?
During steel billet production, several surface defects can occur, compromising the quality and performance of the final product. Some of the common surface defects include: 1. Scale: Scale is a layer of oxide that forms on the surface of the billet due to exposure to high temperatures during heating or rolling. It can reduce the surface quality and cause issues during subsequent processing stages. 2. Cracks: Cracks can form on the surface of the billet due to improper cooling or excessive stress during rolling. These cracks can propagate and lead to further structural weaknesses, affecting the integrity of the final product. 3. Pitting: Pitting refers to the formation of small cavities or depressions on the surface of the billet. It can occur due to reactions with chemicals or exposure to corrosive environments during production or storage. 4. Decarburization: Decarburization is the loss of carbon from the surface of the billet, leaving it with a lower carbon content. This can happen during heating or due to prolonged exposure to high temperatures, affecting the mechanical properties of the steel. 5. Lamination: Lamination defects occur when layers or sheets of material separate within the billet, leading to weak spots in the structure. This defect can be caused by improper casting, cooling, or rolling processes. 6. Inclusions: Inclusions are non-metallic particles or impurities that get trapped within the steel matrix during production. These can include oxides, sulfides, or other foreign materials, which can weaken the steel and reduce its overall properties. 7. Slivers: Slivers are thin strips or elongated pieces of steel that can detach from the billet's surface during rolling. These can cause surface roughness and affect the dimensional accuracy of the final product. 8. Seam: A seam defect occurs when the molten steel does not properly bond during the casting process, resulting in a visible line or seam on the surface of the billet. This defect can weaken the steel and compromise its structural integrity. To ensure high-quality steel billets, manufacturers employ various techniques such as proper control of heating and cooling processes, regular inspection and monitoring, and the use of advanced technologies to detect and eliminate these surface defects.
Q: What is the typical elongation of a steel billet?
The typical elongation of a steel billet can vary depending on factors such as the specific grade of steel and the manufacturing process. However, a common range for elongation in steel billets is typically around 20-30%.
Q: What are the different types of steel billet forging machines?
There are several different types of steel billet forging machines available in the market today. These machines are designed to efficiently shape and form steel billets into desired shapes and sizes. Here are some of the common types of steel billet forging machines: 1. Hydraulic Forging Press: This type of machine uses hydraulic power to exert force on the steel billet, allowing it to be forged into the desired shape. Hydraulic forging presses are known for their high force capabilities and versatility in handling different sizes of billets. 2. Mechanical Forging Press: Mechanical forging presses use mechanical power, such as flywheels or eccentric mechanisms, to exert force on the billet. These machines are known for their reliability and precision, making them suitable for high-volume production. 3. Screw Press: Screw presses utilize a rotating screw mechanism to apply force on the steel billet. They are characterized by their high-speed operation and efficient energy usage. Screw presses are commonly used for forging small to medium-sized billets. 4. Hammer Forging Machine: Hammer forging machines use a hammering action to shape the steel billet. There are various types of hammer forging machines, including steam hammers, air hammers, and hydraulic hammers. These machines are known for their high impact force, making them suitable for heavy-duty forging. 5. Upsetter: Upsetters, also known as upsetting machines, are specifically designed for forging the ends of steel billets. They use a vertical or horizontal ram to apply pressure on the billet, causing it to increase in diameter and length. Upsetters are commonly used for producing forged components with thickened ends. 6. Radial Forging Machine: Radial forging machines employ a rotating roller to apply radial force on the steel billet. This force causes the billet to increase in diameter while maintaining its original length. Radial forging machines are often used for producing seamless rings and other cylindrical components. It's important to note that the choice of the most suitable steel billet forging machine depends on factors such as the size and shape of the billet, desired production volume, and specific requirements of the final product. Each type of machine has its own advantages and limitations, so it is crucial to consider these factors when selecting the appropriate forging machine for a given application.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords