Jinko Solar Silicon Wafer High Current 17.0% Polycrystalline Silicon Solar Cell
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 pc
- Supply Capability:
- 100000 pc/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
4 Bus Bars 156*156 17.6% efficiency poly solar cell
PHYSICAL CHARACTERISTICS
Dimension: 156mm x 156mm ± 0.5mm
Wafer Thickeness: 180um+20um and 200um+20um
Front(-) Four 1.2mm silver busbar
Silicon nitride blue anti-reflection coating
Back(+) aluminum back surface field
1.75mm(silver) wide segment soldering pads
Typical Electrical Characteristics
Efficiency | W(Pmpp) | V(Umpp) | A(Impp) | V(Uoc) | A(Isc) |
17.4-17.5 | 4.234 | 0.517 | 8.231 | 0.622 | 8.759 |
17.5-17.6 | 4.259 | 0.519 | 8.243 | 0.623 | 8.769 |
17.7-17.8 | 4.283 | 0.521 | 8.256 | 0.625 | 8.779 |
17.8-17.9 | 4.307 | 0.523 | 8.268 | 0.626 | 8.788 |
17.9-18.0 | 4.332 | 0.525 | 8.281 | 0.627 | 8.798 |
18.0-18.1 | 4.380 | 0.529 | 8.306 | 0.629 | 8.808 |
18.1-18.2 | 4.405 | 0.531 | 8.318 | 0.632 | 8.818 |
18.2-18.3 | 4.429 | 0.533 | 8.331 | 0.633 | 8.837 |
18.3-18.4 | 4.453 | 0.535 | 8.344 | 0.634 | 8.847 |
18.4-18.5 | 4.478 | 0.537 | 8.356 | 0.636 | 8.856 |
18.5-18.6 | 4.502 | 0.539 | 8.369 | 0.637 | 8.866 |
Efficiency | W(Pmpp) | V(Umpp) | A(Impp) | V(Uoc) | A(Isc) |
20.90-21.00 | 5.06 | 0.557 | 9.007 | 0.653 | 9.688 |
20.80-20.90 | 5.04 | 0.556 | 9.062 | 0.652 | 9.683 |
20.70-20.80 | 5.02 | 0.554 | 9.055 | 0.651 | 9.684 |
20.60-20.70 | 4.99 | 0.552 | 9.033 | 0.651 | 9.672 |
20.50-20.60 | 4.97 | 0.550 | 9.002 | 0.650 | 9.673 |
20.40-20.50 | 4.94 | 0.548 | 9.012 | 0.649 | 9.674 |
20.30-20.40 | 4.92 | 0.546 | 9.009 | 0.649 | 9.655 |
20.20-20.30 | 4.89 | 0.543 | 9.012 | 0.648 | 9.634 |
20.10-20.20 | 4.87 | 0.541 | 8.998 | 0.648 | 9.617 |
20.00-20.10 | 4.85 | 0.540 | 8.977 | 0.647 | 9.600 |
*Data under standard testing conditional (STC):1,000w/m2,AM1.5, 25°C , Pmax:Positive power tolerance.
3 Bus Bars 156*156 17.4% efficiency poly solar cell
Dimension: 156 mm x 156 mm ± 0.5 mm
Wafer Thickeness: 156 mm x 156 mm ± 0.5 mm
Typical Electrical Characteristics:
Efficiency code | 1660 | 1680 | 1700 | 1720 | 1740 | 1760 | 1780 | 1800 | 1820 | 1840 | 1860 |
Efficiency (%) | 16.6 | 16.8 | 17.0 | 17.2 | 17.4 | 17.6 | 17.8 | 18.0 | 18.2 | 18.4 | 18.6 |
Pmax (W) | 4.04 | 4.09 | 4.14 | 4.19 | 4.23 | 4.28 | 4.33 | 4.38 | 4.43 | 4.48 | 4.53 |
Voc (V) | 0.612 | 0.615 | 0.618 | 0.621 | 0.624 | 0.627 | 0.629 | 0.63 | 0.633 | 0.635 | 0.637 |
Isc (A) | 8.42 | 8.46 | 8.51 | 8.56 | 8.61 | 8.65 | 8.69 | 8.73 | 8.77 | 8.81 | 8.84 |
Imp (A) | 7.91 | 7.99 | 8.08 | 8.16 | 8.22 | 8.27 | 8.33 | 8.38 | 8.43 | 8.48 | 8.53 |
* Testing conditions: 1000 W/m2, AM 1.5, 25 °C, Tolerance: Efficiency ± 0.2% abs., Pmpp ±1.5% rel.
* Imin : at 0.5 V
Production:
Package:
FAQ:
1. Q: Do you have your own factory?
A: Yes, we have. Our factory located in Jiangsu
2. Q: How can I visit your factory?
A: Before you visit,please contact us.We will show you the route or arrange a car to pick you up.
3. Q: Do you provide free sample?
A: Commenly we provide paid sample.
4. Q: Could you print our company LOGO on the nameplate and package?
A: Yes, we accept it.And need an Authorization Letter from you.
5. Q: Do you accept custom design on size?
A: Yes, if the size is reasonable.
6. Q: How can I be your agent in my country?
A: Please leave feedback. It's better for us to talk about details by email.
7. Q: Do you have solar project engineer who can guide me to install system?
A: Yes, we have a professional engineer team. They can teach you how to install a solar system.
- Q: What can be used to adjust its viscosity
- If you are a manufacturer of cutting fluid, ask your technical staff
- Q: How are solar silicon wafers cleaned and maintained?
- Solar silicon wafers are typically cleaned and maintained through a multi-step process. Initially, any loose debris or dust particles are removed by gently rinsing the surface with water or using compressed air. Next, a cleaning solution, often a mixture of water and mild detergent, is applied to the wafer and scrubbed using soft brushes or sponges. This step helps to remove any remaining dirt or contaminants. Afterward, the wafer is rinsed thoroughly with water to eliminate any residue from the cleaning solution. Finally, the wafer is left to air dry or dried using a lint-free cloth or nitrogen gas. Regular inspections and maintenance are also carried out to identify and address any issues such as cracks, scratches, or cell damage that may affect the efficiency of the solar silicon wafer.
- Q: Why not use crystal silicon battery N type silicon, boron diffusion is difficult, or material difficult to do, or the principle of the problem?
- Can use N type silicon chip, the current SUN POWER battery slice, is the use of N type silicon wafer production, conversion efficiency is very high, but the price is not cheap.At present, most of the domestic manufacturers do not have the production of battery N battery pack, it should be a cost problem.
- Q: Can solar silicon wafers be used in telecommunications infrastructure?
- Yes, solar silicon wafers can be used in telecommunications infrastructure. They can be utilized in the construction of solar cells that convert sunlight into electricity to power various telecommunications equipment and systems.
- Q: Can solar silicon wafers be integrated into building materials?
- Yes, solar silicon wafers can be integrated into building materials. The integration of solar panels into building components such as windows, roofs, and facades is a growing trend in sustainable architecture. These building-integrated photovoltaics (BIPV) allow for the generation of clean energy while also serving functional and aesthetic purposes.
- Q: How do solar silicon wafers affect the overall flexibility of a solar panel?
- Solar silicon wafers have a significant impact on the overall flexibility of a solar panel. The size and thickness of the wafers determine how rigid or flexible the panel will be. Thicker wafers make the panel less flexible, while thinner wafers allow for more flexibility. Additionally, the type of silicon used and the manufacturing process can also influence the panel's flexibility.
- Q: What is the typical cost per watt for a solar silicon wafer?
- The typical cost per watt for a solar silicon wafer can vary depending on various factors such as quality, quantity, and market conditions. However, as of 2021, the average cost per watt for a solar silicon wafer is around $0.20 to $0.30.
- Q: What is the role of a mounting structure in a solar silicon wafer?
- The role of a mounting structure in a solar silicon wafer is to provide support and stability to the wafer, allowing it to be securely attached to a solar panel or other mounting surface. The mounting structure ensures that the wafer is properly positioned and protected, maximizing its exposure to sunlight and optimizing its energy generation capabilities.
- Q: Can solar silicon wafers be used in solar-powered satellites?
- Yes, solar silicon wafers can indeed be used in solar-powered satellites. These wafers are commonly used in the manufacturing of solar cells, which are essential components of solar panels. Solar cells convert sunlight into electricity, making them ideal for powering satellites in space where solar energy is abundant.
- Q: Can solar silicon wafers be used in wearable technology?
- Yes, solar silicon wafers can be used in wearable technology. They can be integrated into wearable devices such as smartwatches or fitness trackers to capture and convert solar energy into electrical power, enabling longer battery life or even eliminating the need for external charging.
Send your message to us
Jinko Solar Silicon Wafer High Current 17.0% Polycrystalline Silicon Solar Cell
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 pc
- Supply Capability:
- 100000 pc/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords