• Square Steel Billet Q235 Grade Prime Quality 10# System 1
  • Square Steel Billet Q235 Grade Prime Quality 10# System 2
  • Square Steel Billet Q235 Grade Prime Quality 10# System 3
  • Square Steel Billet Q235 Grade Prime Quality 10# System 4
  • Square Steel Billet Q235 Grade Prime Quality 10# System 5
  • Square Steel Billet Q235 Grade Prime Quality 10# System 6
Square Steel Billet Q235 Grade Prime Quality 10#

Square Steel Billet Q235 Grade Prime Quality 10#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 Grade Prime Quality 10#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 Grade Prime Quality 10#

Main Feature Square Steel Billet Q235 Grade Prime Quality 10#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 Grade Prime Quality 10#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 Grade Prime Quality 10#

Specifications of Square Steel Billet Q235 Grade Prime Quality 10#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 Grade Prime Quality 10#

FAQ of Square Steel Billet Q235 Grade Prime Quality 10#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q:How are steel billets used in the manufacturing of railway equipment?
Steel billets are used in the manufacturing of railway equipment as they are heated and then shaped into various components such as rails, wheels, axles, and couplings. These billets serve as the raw material that undergoes further processing, including cutting, bending, and welding, to create the final products used in the construction and maintenance of railway systems.
Q:How are steel billets used in the manufacturing of agricultural equipment?
Steel billets are a vital component in the manufacturing process of agricultural equipment. They are essentially semi-finished steel products that serve as the raw material for various parts and components of agricultural machinery. When it comes to agricultural equipment manufacturing, one of the main purposes of steel billets is to construct the frame or chassis of the equipment. The frame provides the necessary structural integrity and support to endure the challenging conditions encountered in agricultural applications. Steel billets are commonly used due to their high strength, durability, and resistance to corrosion. These qualities are essential to withstand the heavy loads, vibrations, and exposure to harsh environments that agricultural machinery often faces. Moreover, steel billets are also utilized in producing other crucial components like axles, gears, shafts, and blades. These components are vital for the proper functioning and performance of agricultural equipment. Steel billets are preferred for these applications because of their machinability, allowing them to be easily shaped and formed into the specific specifications and dimensions required for each component. Furthermore, steel billets are employed in manufacturing attachments and implements commonly used in agricultural operations. For example, plows, harrows, cultivators, and seeders rely on steel billets to provide strength, durability, and resistance to wear and tear. These attachments often encounter demanding conditions and need to withstand the forces encountered during field operations. In summary, steel billets play a critical role in the manufacturing of agricultural equipment by providing the necessary strength, durability, and functionality required for these machines to perform effectively in the agricultural sector. The use of steel billets ensures that the agricultural equipment can withstand the harsh conditions of farming operations, resulting in increased productivity, efficiency, and longevity of the machinery.
Q:Are steel billets used in the shipbuilding industry?
Steel billets are commonly utilized in the shipbuilding industry. They serve as semi-finished steel products, usually employed as raw materials for further processing. Within shipbuilding, these billets find application in the production of diverse structural components, including plates, beams, and bars, which constitute the ship's framework. The remarkable strength and durability of steel deem it an optimal material for ship construction, capable of enduring the challenging conditions of the marine environment. Moreover, steel billets possess the advantage of being easily molded and welded, facilitating the fabrication of intricate ship structures. Overall, the pivotal role played by steel billets in the shipbuilding sector revolves around supplying the essential raw materials necessary for constructing robust and dependable vessels.
Q:How are steel billets shaped into rods or wires?
Steel billets are shaped into rods or wires through a process called hot rolling. Hot rolling involves passing the steel billets through a series of rollers at high temperatures. The first step is to heat the billets to a temperature above their recrystallization point, typically around 1200-1300 degrees Celsius. This temperature ensures that the steel is soft and malleable, making it easier to shape. Once the billets are heated, they are then fed through a series of rollers that gradually reduce their thickness and shape them into the desired rod or wire. These rollers apply pressure to the billets, causing them to elongate and decrease in thickness. The number of rollers and their configurations may vary depending on the specific requirements of the rod or wire being produced. During the hot rolling process, the steel undergoes plastic deformation due to the applied pressure and high temperatures. This plastic deformation allows the steel to change its shape without breaking or cracking. The continuous rolling and reduction of thickness gradually transform the billets into rods or wires. After the steel has been rolled to the desired size and shape, it is then cooled, typically through a process known as air cooling. This cooling process allows the steel to retain its new shape and hardness. The cooled rods or wires can then be further processed, such as through additional heat treatments or surface treatments, to enhance their properties and meet specific requirements. Overall, the hot rolling process is essential in shaping steel billets into rods or wires. It allows for the precise control of dimensions and properties while ensuring the final product meets the desired specifications.
Q:What are the main factors that determine the market price of steel billets?
The market price of steel billets is influenced by several key factors. Firstly, the demand and supply dynamics play a significant role in determining the market price. If there is a high demand for steel billets and the supply is limited, the price tends to increase. Conversely, if the demand is low and there is an oversupply of steel billets, the price may decrease. Another important factor is the cost of raw materials. Steel billets are primarily made from iron ore, which is subject to price fluctuations in the global market. Increases in the cost of iron ore can drive up the market price of steel billets, as manufacturers pass on the higher production expenses to consumers. Energy costs also impact the market price of steel billets. Steel production is an energy-intensive process, and any fluctuations in energy prices, such as those of coal or natural gas, can influence the final price of steel billets. Additionally, global economic conditions and geopolitical factors can have a significant impact on the market price of steel billets. Economic growth or recession in major steel-consuming countries can affect demand, while trade policies, tariffs, or sanctions imposed by governments can disrupt the supply chain and result in price volatility. Furthermore, technological advancements and innovations in the steel industry can influence the market price as well. Improvements in production processes or the development of new steelmaking techniques can affect the cost of manufacturing steel billets, which can in turn impact the market price. Lastly, currency exchange rates can also affect the market price of steel billets. If the currency of steel-producing countries strengthens against the currencies of steel-consuming countries, it can make the steel billets more expensive for foreign buyers, potentially leading to a decrease in demand and a subsequent decrease in price. In summary, the market price of steel billets is determined by the interplay of supply and demand dynamics, the cost of raw materials and energy, global economic conditions, technological advancements, and currency exchange rates. Being aware of these factors is crucial for both buyers and sellers in the steel billet market to make informed decisions and adapt to changing market conditions.
Q:What are the specifications for alloy steel billets used in the defense industry?
The defense industry requires alloy steel billets that meet specific criteria for each project. However, there are commonly followed specifications. Firstly, strict material standards must be met, and certification to military or industry specifications is necessary. These specifications cover the chemical composition, mechanical properties, and heat treatment of the alloy steel. The chemical composition is crucial as it determines the material's strength, hardness, and resistance to corrosion and high temperatures. Alloying elements like chromium, molybdenum, vanadium, and nickel are commonly used. Additionally, the carbon content is controlled to achieve desired strength and toughness. In terms of mechanical properties, defense applications require high strength, toughness, and impact resistance. The billets must withstand extreme conditions like high pressure, shock, and vibrations. Specific heat treatments, such as quenching and tempering, may be employed. Dimensional specifications are also important, including precise size and shape tolerances and surface finish requirements. This ensures compatibility with manufacturing processes and final products. Furthermore, certification to industry or military standards like MIL-STD or ASTM specifications may be necessary. These standards outline testing methods, quality control requirements, and performance criteria for the alloy steel billets. Overall, the specifications for alloy steel billets used in the defense industry cover chemical composition, mechanical properties, dimensional tolerances, and adherence to industry or military standards. These specifications are vital for ensuring the performance, durability, and safety of defense products.
Q:What are the different forging processes for steel billets?
Different forging processes can be used for steel billets, depending on the desired final product's shape and properties. Some of these processes include: 1. Open-Die Forging: Steel billets are placed between flat dies and compressed to shape them. The billet is not completely enclosed, allowing it to freely deform and flow. Open-die forging is commonly used for large and simple shapes like bars, shafts, and rings. 2. Closed-Die Forging: Also known as impression-die forging, this process involves using specially shaped dies that fully enclose the steel billet. The dies have cavities matching the desired final shape. When the billet is compressed between the dies, it takes the shape of the cavities, resulting in a precise and intricate final product. Closed-die forging is suitable for complex shapes like automotive components, aerospace parts, and tools. 3. Seamless Rolled Ring Forging: Steel billets are shaped into a ring blank and then subjected to intense pressure between two rotating dies. The dies gradually reduce the diameter of the ring blank, elongating and shaping it into the desired ring shape. Seamless rolled ring forging is commonly used for producing large and high-strength rings used in turbines, gears, and bearings. 4. Upset Forging: In this process, the steel billet is heated and placed between two dies. One die remains stationary while the other moves towards the billet, compressing it and causing radial spreading. Upset forging is commonly used for short-length parts like bolts, screws, and rivets. 5. Press Forging: A hydraulic or mechanical press is used to apply compressive forces to the steel billet, shaping it into the desired form. Press forging can be done with open or closed dies, depending on shape complexity. It is commonly used for producing components with high accuracy and intricate details like gears, engine parts, and hand tools. Each of these forging processes has its own advantages and limitations based on the specific requirements of the steel billet and the desired final product. Factors such as shape complexity, material properties, production volume, and cost considerations determine the choice of forging process.
Q:How are steel billets cut to size?
Depending on specific requirements and available equipment, steel billets can be cut to size using various methods. Sawing or shearing is a common technique, offering precision and accuracy. This can be done manually or with automated machinery. For thicker billets or intricate shapes, flame cutting is often used. This method involves melting and severing the steel with a high-temperature flame. Similarly, plasma cutting is a popular option. It utilizes a high-velocity jet of ionized gas to melt and cut through the steel, providing smoother edges and a more precise cut. Water jet cutting is another possibility, suitable for materials sensitive to heat or for achieving intricate shapes. It involves using a high-pressure jet of water mixed with an abrasive material. In some cases, laser cutting technology is employed. This method uses a laser beam to heat and melt the steel, allowing for precise and efficient cutting. Laser cutting is preferred for its ability to handle various thicknesses and complex shapes. Ultimately, the choice of cutting method for steel billets depends on factors such as desired precision, billet thickness, shape complexity, and available equipment.
Q:What are the specifications for stainless steel billets used in the food industry?
To ensure safety and hygiene, the food industry requires stainless steel billets to meet specific specifications. These specifications focus on the stainless steel's composition, corrosion resistance, and ability to withstand high temperatures and aggressive cleaning agents. First and foremost, stainless steel used for food industry billets must contain a high percentage of chromium, typically ranging from 16% to 18%. This high chromium content ensures excellent corrosion resistance, preventing any reaction with food or cleaning agents. In addition, these billets should have a low carbon content, usually below 0.08%. By keeping the carbon content low, the stainless steel becomes less susceptible to sensitization, which can cause corrosion and contamination of food products. Furthermore, the stainless steel billets must adhere to specific international standards, such as ASTM A276 or EN 10088. These standards outline the minimum requirements for chemical composition, mechanical properties, and surface finish. Moreover, the surface finish of the billets is crucial in the food industry. It must be smooth and free from defects like pits or cracks to prevent the accumulation of bacteria and facilitate easy cleaning. The dimensions of the billets also contribute to their suitability for the food industry. They are commonly available in square or rectangular shapes, with various sizes depending on the specific application. Lastly, these billets should be certified and compliant with industry regulations, such as those set by the Food and Drug Administration (FDA) or the European Food Safety Authority (EFSA). In conclusion, stainless steel billets used in the food industry must meet specific requirements regarding chromium and carbon content, international standards, surface finish, dimensions, and industry regulations for safety and hygiene.
Q:What are the different shapes and forms of steel billets?
Steel billets come in a variety of shapes and forms depending on their intended use and manufacturing process. The most common shapes of steel billets include square, rectangular, round, and hexagonal. These shapes are typically achieved through a process called casting, where molten steel is poured into a mold and left to solidify. Square billets are the most commonly used shape and are often produced for rolling into long products like bars, rods, and wire. Rectangular billets, which have longer sides compared to their width, are also used for rolling into long products but are typically used for applications that require a larger cross-sectional area. Round billets, as the name suggests, are cylindrical in shape and are primarily used for the production of seamless tubes, pipes, and other tubular products. The round shape is preferred for these applications as it allows for a more uniform distribution of stresses during the manufacturing process. Hexagonal billets have six sides and are often used for forging and machining applications. The unique shape of hexagonal billets provides greater strength and stability, making them suitable for producing high-quality components, such as bolts, nuts, and other fasteners. In addition to these common shapes, steel billets can also come in custom shapes and sizes depending on specific requirements. These custom shapes are often achieved by using specialized molds or by further processing the billets through techniques like extrusion or hot rolling. Overall, the different shapes and forms of steel billets allow for the production of a wide range of steel products, each suited to its specific application and manufacturing process.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords