Ribbed Steel Bar Direct
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Ribbed Steel Bar Direct at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Ribbed Steel Bar Direct are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's Ribbed Steel Bar Direct are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: Q195 – 235
Certificates: ISO, SGS, BV, CIQ
Length: 6m – 12m, as per customer request
Packaging: Export packing, nude packing, bundled
Chinese Standard (H*W*T) | Weight (Kg/m) | 6m (pcs/ton) | Light I (H*W*T) | Weight (Kg/m) | 6m (pcs/ton) | Light II (H*W*T) | Weight (Kg/m) | 6M |
100*68*4.5 | 11.261 | 14.8 | 100*66*4.3 | 10.13 | 16.4 | 100*64*4 | 8.45 | 19.7 |
120*74*5.0 | 13.987 | 11.9 | 120*72*4.8 | 12.59 | 13.2 | 120*70*4.5 | 10.49 | 15.8 |
140*80*5.5 | 16.89 | 9.8 | 140*78*5.3 | 15.2 | 10.9 | 140*76*5 | 12.67 | 13.1 |
160*88*6 | 20.513 | 8.1 | 160*86*5.8 | 18.46 | 9 | 160*84*5.5 | 15.38 | 10.8 |
180*94*6.5 | 24.143 | 6.9 | 180*92*6.3 | 21.73 | 7.6 | 180*90*6 | 18.11 | 9.2 |
200*100*7 | 27.929 | 5.9 | 200*98*6.8 | 25.14 | 6.6 | 200*96*6.5 | 20.95 | 7.9 |
220*110*7.5 | 33.07 | 5 | 220*108*7.3 | 29.76 | 5.6 | 220*106*7 | 24.8 | 6.7 |
250*116*8 | 38.105 | 4.3 | 250*114*7.8 | 34.29 | 4.8 | 250*112*7.5 | 28.58 | 5.8 |
280*122*8.5 | 43.492 | 3.8 | 280*120*8.2 | 39.14 | 4.2 | 280*120*8 | 36.97 | 4.5 |
300*126*9 | 48.084 | 3.4 | 300*124*9.2 | 43.28 | 3.8 | 300*124*8.5 | 40.87 | 4 |
320*130*9.5 | 52.717 | 3.1 | 320*127*9.2 | 48.5 | 3.4 | |||
360*136*10 | 60.037 | 2.7 | 360*132*9.5 | 55.23 | 3 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Q5: Can stainless steel rust?
A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
Images:
- Q: How do steel billets contribute to the manufacturing of construction machinery?
- Steel billets are an essential raw material in the manufacturing of construction machinery as they are the starting point for forging or casting various components. These billets are heated and shaped into desired forms, such as gears, axles, and structural frames, which provide strength, durability, and stability to the machinery. The high-quality steel used in billets ensures that the construction machinery can withstand heavy loads, harsh environments, and demanding construction tasks, making them crucial for the overall performance and safety of these machines.
- Q: Can steel billets be used in the production of jewelry?
- Due to its composition and properties, steel billets are usually not utilized in jewelry production. Steel, which is primarily made up of iron and carbon and contains additional elements like manganese, chromium, and nickel, possesses strength and durability that make it well-suited for various industrial applications, but not for crafting jewelry. In contrast, jewelry is typically crafted from precious metals like gold, silver, and platinum, which possess unique characteristics that make them suitable for adornment. These metals are easily shaped and molded into intricate designs due to their malleability. Moreover, they have a lustrous appearance and are resistant to tarnishing or corrosion. On the other hand, steel is much harder and less malleable compared to precious metals. It cannot be easily manipulated into the delicate and intricate shapes required for jewelry making. Additionally, steel has a dull gray color that does not offer the desired aesthetic appeal in jewelry. While it is technically possible to create jewelry using steel billets, it is not a common practice due to the aforementioned reasons. Steel is primarily utilized in industries where its high strength and durability are necessary, such as construction, automotive, and machinery manufacturing.
- Q: How do steel billets contribute to the manufacturing of sports gear?
- Steel billets play a crucial role in the manufacturing of sports gear. These cylindrical or square-shaped semi-finished products are made by casting liquid steel into molds and then allowing them to solidify. Once the steel billets are formed, they can be further processed to create various sports equipment such as golf clubs, tennis rackets, baseball bats, and hockey sticks. One of the main reasons steel billets are used in the production of sports gear is due to their exceptional strength and durability. Steel is known for its high tensile strength, which means it can withstand significant amounts of force without breaking or deforming. This makes it an ideal material for sports equipment that requires resilience and longevity. Furthermore, steel billets offer excellent flexibility and customization options in terms of design and performance. Manufacturers can shape and mold the billets to create different types of sports gear, implementing specific features that enhance performance. For example, golf club heads are often made from steel billets, allowing manufacturers to manipulate the weight distribution to optimize the swing dynamics and increase distance. Steel billets also contribute to the performance of sports gear by providing stability and control. The rigid nature of steel ensures that the equipment maintains its shape and does not experience excessive vibrations during use. This stability is particularly crucial in sports like tennis or hockey, where precise control and accuracy are paramount. Moreover, steel billets can be combined with other materials to create composite sports gear. By integrating steel with materials like carbon fiber or titanium, manufacturers can create lightweight yet incredibly strong equipment. This combination allows for improved maneuverability and better overall performance. In summary, steel billets are vital components in the manufacturing of sports gear due to their exceptional strength, durability, flexibility, and customization options. From golf clubs to hockey sticks, steel billets contribute to the production of high-quality sports equipment that offers stability, control, and enhanced performance for athletes.
- Q: What are the different types of steel billet casting processes?
- There are several different types of steel billet casting processes, each with its own advantages and disadvantages. Some of the most commonly used processes include continuous casting, ingot casting, and direct chill casting. Continuous casting is a widely used method that involves pouring molten steel into a water-cooled mold, which then solidifies into a continuous strand or billet. This process offers high production rates, improved quality control, and reduced energy consumption compared to other methods. Continuous casting is ideal for producing large volumes of steel billets with consistent dimensions. Ingot casting, on the other hand, is an older and less commonly used method. It involves pouring molten steel into individual molds called ingot molds, which solidify into solid blocks or ingots. Once solidified, the ingots are then reheated and shaped into billets through processes like rolling or forging. Ingot casting allows for greater flexibility in terms of alloy composition and size, but it typically requires more energy and has a slower production rate compared to continuous casting. Direct chill casting is another popular process, especially for producing aluminum alloys. It involves pouring molten steel into a water-cooled mold, similar to continuous casting. The main difference is that direct chill casting uses a rotating mold to create a cylindrical, or sometimes rectangular, billet. This process offers better control over the solidification process, resulting in improved microstructure and mechanical properties of the billet. Other less common steel billet casting processes include electromagnetic casting, where an electromagnetic field is used to control the flow of molten steel, and centrifugal casting, which involves pouring molten steel into a rotating mold to create cylindrical billets. These methods are typically used for specialized applications and are not as widely adopted as continuous casting or ingot casting. In conclusion, the different types of steel billet casting processes include continuous casting, ingot casting, direct chill casting, electromagnetic casting, and centrifugal casting. Each method offers unique advantages and is suitable for different production requirements and steel grades. The choice of casting process depends on factors such as desired billet size, production volume, alloy composition, and cost considerations.
- Q: How are steel billets used in the production of automotive parts?
- The utilization of steel billets is crucial in the manufacturing of automotive parts. These billets, which are produced through a casting method, serve as semi-finished steel products. Typically, they take on a rectangular or square form. Within the automotive industry, steel billets are predominantly employed as raw materials for forging and rolling procedures. They act as the initial stage in the production of various automotive components, including engine parts, transmission gears, crankshafts, connecting rods, and axle shafts. One of the primary uses of steel billets in the manufacturing of automotive parts is through forging. This process entails the molding of the billets into desired shapes through the application of heat and pressure. By doing so, the strength and durability of the automotive parts are significantly enhanced. Forged components are renowned for their superior mechanical properties, such as high strength, impact resistance, and resilience against fatigue failures. Examples of commonly forged automotive parts include crankshafts, connecting rods, and suspension components. Another method by which steel billets are employed in the production of automotive parts is through the rolling process. Rolling involves the passage of the billets through a series of rollers to decrease their thickness and shape them into sheets or strips. These sheets or strips can then undergo further processing to create various components. Rolled steel is extensively used in the manufacturing of automotive body panels, chassis frames, and structural parts. Rolled components offer exceptional formability, which is vital in producing intricate shapes and achieving precision in automotive parts. To summarize, steel billets hold great significance in the manufacturing of automotive parts. They serve as the starting point for forging and rolling processes, which are instrumental in the production of a wide array of components. By utilizing steel billets, automotive manufacturers can create parts with exceptional strength, durability, and precision, thereby ensuring the overall quality and performance of the vehicles they produce.
- Q: What are the different types of surface defects found in steel billets?
- Steel billets can contain various types of surface defects, which may arise from the manufacturing process or external factors. Common surface defects in steel billets include: 1. Scale: During heating and cooling, an oxide layer called scale can form on the billet's surface. This thin layer resembles rust and can impact the steel's quality and appearance. 2. Cracks: Improper cooling or excessive stress can cause cracks during manufacturing. These cracks may be longitudinal or transverse and weaken the billet's structural integrity. 3. Pits: Small depressions or cavities known as pits can develop on the billet's surface. They may result from impurities or corrosion. 4. Seam: Improperly joined sections during manufacturing can lead to a linear defect called a seam along the billet's surface. 5. Lamination: Lamination defects occur when layers or flakes detach from the billet's surface. This can be due to inadequate bonding between layers or improper rolling. 6. Inclusions: Non-metallic particles or impurities can become trapped within the steel billet during manufacturing. These inclusions can impact the steel's mechanical properties and overall quality. 7. Decarburization: Decarburization is a surface defect where the steel's carbon content is reduced, resulting in a softer and weaker surface layer. This defect may arise from improper heating or cooling processes. Detecting and addressing these surface defects in steel billets is crucial to ensure the quality and performance of the final steel products. Manufacturers employ various inspection methods and quality control measures during the manufacturing process to minimize the occurrence of these defects.
- Q: What are the different heat treatment processes for steel billets?
- There are several different heat treatment processes that can be used for steel billets, each with its own purpose and benefits. Some of the common heat treatment processes for steel billets include annealing, normalizing, quenching, tempering, and case hardening. 1. Annealing: This process involves heating the steel billets to a high temperature and then slowly cooling them to room temperature. The purpose of annealing is to reduce the hardness of the steel, improve its machinability, and relieve internal stresses. It also helps in refining the grain structure, making the steel more ductile and less brittle. 2. Normalizing: In normalizing, the steel billets are heated to a temperature above the critical range and then cooled in still air. This process is used to refine the grain structure, improve mechanical properties, and enhance machinability. Normalizing also helps in relieving internal stresses and achieving uniformity in microstructure. 3. Quenching: Quenching involves rapidly cooling the steel billets by immersing them in a quenching medium such as oil, water, or brine. This process is designed to harden the steel by transforming the austenite phase into martensite. Quenching results in a hard and brittle steel with improved wear resistance, but it also introduces residual stresses and the potential for cracking. 4. Tempering: After quenching, the steel billets are often tempered to reduce brittleness and improve toughness. Tempering involves reheating the quenched steel to a lower temperature and holding it for a specific period of time. This process helps in relieving stresses, reducing hardness, and improving ductility without sacrificing too much strength. 5. Case Hardening: Case hardening is a process used to increase the surface hardness of steel billets while maintaining a tough and ductile core. There are different methods of case hardening, such as carburizing and nitriding. Carburizing involves introducing carbon into the surface of the steel by heating it in a carbon-rich environment, while nitriding introduces nitrogen to form a hard nitride layer on the surface. These processes enhance wear resistance and extend the lifespan of the steel billets. These heat treatment processes for steel billets offer manufacturers the ability to tailor the properties of the steel to meet specific application requirements. By carefully selecting and implementing the appropriate heat treatment process, the resulting steel billets can exhibit a wide range of mechanical properties, such as hardness, strength, toughness, and wear resistance.
- Q: How are steel billets inspected for quality?
- Steel billets are typically inspected for quality using various non-destructive testing methods such as visual inspection, ultrasonic testing, magnetic particle inspection, and dye penetrant testing. These tests help identify any surface defects, cracks, or internal flaws in the billets, ensuring that they meet the required quality standards before further processing.
- Q: What is Alfa carbon? What is beta carbon?
- Alfa is directly connected with the functional groups of carbon atoms of carbon atoms, such as CH3CH2COOH CH2 in which methylene propionate is Alfa carbon carbon carbon atom is the beta carbon atom is directly connected with the functional groups and the connection of the carbon (around Kazakhstan), such as the CH3CH2COOH CH3 propionic acid methyl carbon is the beta carbon
- Q: How do steel billets contribute to the overall safety of a structure?
- A structure's overall safety is greatly influenced by steel billets in several ways. To begin with, steel billets act as the raw material for producing steel bars, beams, columns, and other structural components. These components are widely utilized in construction due to their exceptional strength and durability. By utilizing steel billets as the starting material, the resulting steel products display outstanding load-bearing capacity, thereby bolstering the structural integrity of the building. Furthermore, steel billets undergo a rigorous manufacturing process that encompasses various quality control assessments. These assessments ensure that the billets possess consistent and dependable mechanical properties, such as high tensile strength and impact resistance. Consequently, when these billets are employed in constructing a structure, they contribute to its overall safety by providing a dependable and robust framework capable of withstanding external forces like wind, earthquakes, or heavy loads. Additionally, advanced metallurgical techniques, such as controlled cooling or heat treatment, are frequently employed to produce steel billets with specific properties required for structural applications. These processes aid in enhancing the steel's microstructure, reducing internal defects, and improving its resistance to corrosion, fatigue, and other forms of degradation. In turn, this prolongs the structure's lifespan and minimizes the risk of structural failure, ensuring the safety of its occupants. Moreover, steel billets can be manufactured with precise dimensions and tolerances, permitting accurate and efficient construction. This precision in fabrication ensures that structural components fit together seamlessly, reducing the likelihood of gaps, misalignments, or weak points that could compromise the structure's safety. Lastly, steel billets are highly recyclable, making them an environmentally friendly choice for construction. By opting for steel billets, the construction industry can diminish its carbon footprint and contribute to sustainable development. This focus on sustainability aligns with the structure's overall safety, as a sustainable approach guarantees the long-term stability and resilience of the built environment. In conclusion, steel billets enhance the overall safety of a structure by providing construction materials that are strong, durable, and reliable. Their consistent mechanical properties, resistance to external forces, improved microstructure, and precise fabrication ensure a sturdy and secure framework. Additionally, their recyclability promotes sustainability, further enhancing the structure's long-term safety and integrity.
Send your message to us
Ribbed Steel Bar Direct
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords