• Prime square alloy steel billet 130mm Q235 System 1
  • Prime square alloy steel billet 130mm Q235 System 2
  • Prime square alloy steel billet 130mm Q235 System 3
  • Prime square alloy steel billet 130mm Q235 System 4
  • Prime square alloy steel billet 130mm Q235 System 5
  • Prime square alloy steel billet 130mm Q235 System 6
Prime square alloy steel billet 130mm Q235

Prime square alloy steel billet 130mm Q235

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime square alloy steel billet 130mm Q235

 Prime square alloy steel billet 130mm Q235

Description of Prime square alloy steel billet 130mm Q235 

Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED  

Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory  

Payment & Shipping Terms:T/T ,L/C, and FOB CHINA 

Minimum Order Quantity: 25Tons  

Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.

Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.


 Prime square alloy steel billet 130mm Q235

 

Main Feature of Prime square alloy steel billet 130mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime square alloy steel billet 130mm Q235 

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet. 

2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings. 

3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers. 

4) Versatility: can be used in the various areas.

  Prime square alloy steel billet 130mm Q235

 

Specifications of Prime square alloy steel billet 130mm Q235

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime square alloy steel billet 130mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
we always fix steel produce in container well to make it safe arrive at destination port 
we always provide best and professional forward service for our buyer 
we always apply 14days free detention for our buyers container in destination
we provide one set After-sales service for our buyer 
we provide China inland steel market price report 
we help our buyer become number one in local market .

Q: How are steel billets used in the production of automotive exhaust systems?
Automotive exhaust systems rely heavily on steel billets as a vital element. These solid blocks of steel serve as the primary material for manufacturing various parts and components of the exhaust system. To begin the process, the steel billets are heated in a furnace to a specific temperature, which softens the steel and makes it malleable. Once heated, the billets are then molded and shaped into different components of the exhaust system, such as pipes, mufflers, and catalytic converters. The shaping process can be accomplished through hot rolling, cold rolling, or extrusion, depending on the desired shape and properties of the component. Following the shaping process, further treatment is carried out to enhance the strength and durability of the steel billets. This treatment may involve heat processes like quenching and tempering, which improve the steel's hardness, toughness, and resistance to corrosion. These treatments ensure that the exhaust system components can endure the harsh conditions they will encounter, including high temperatures and corrosive gases. Once the steel billets have been shaped and treated, they are assembled and welded together to form the final exhaust system. This involves joining the various components, such as pipes and mufflers, using welding techniques like arc welding or laser welding. These welding processes guarantee secure connections between the components, preventing any leaks or failures in the exhaust system. In summary, steel billets are of utmost importance in the production of automotive exhaust systems as they provide the necessary raw material for shaping and forming the various components. Their exceptional strength, durability, and resistance to high temperatures and corrosion make them an ideal choice for manufacturing exhaust systems capable of withstanding the demanding conditions associated with automotive use.
Q: How are steel billets used in the manufacturing of packaging equipment?
Packaging equipment relies heavily on steel billets as a vital element in its manufacturing process. These billets serve as the primary material for producing diverse parts and components crucial to the functioning of packaging machinery. To begin with, steel billets are typically employed in the fabrication of packaging equipment frames and structures. The robust nature and enduring quality of steel make it an ideal selection for constructing a sturdy framework that provides support to the entire machine. This guarantees that the packaging equipment can endure the demands of continuous operation and heavy loads. Furthermore, steel billets are also instrumental in the production of significant components such as gears, shafts, and rollers. These components play a pivotal role in ensuring the smooth operation and rotation required for efficient product packaging. Steel's exceptional mechanical properties, including high tensile strength and resistance to wear and tear, render it suitable for these critical parts. Additionally, steel billets are frequently utilized in the manufacturing of cutting and forming tools employed in packaging equipment. These tools are responsible for shaping and cutting various materials like cardboard or plastic to create packaging containers or wrap products. The hardness of steel and its ability to maintain sharp edges make it an ideal material for crafting these tools, thus ensuring precise and efficient packaging operations. In conclusion, the significance of steel billets in the manufacturing of packaging equipment cannot be overstated, as they are instrumental in creating the frames, components, and tools necessary for the efficient and reliable operation of packaging machinery. The strength, durability, and versatility of steel billets make them the preferred choice in the packaging industry.
Q: How often is it? What is the range of temperature in the process of rolling? What is the temperature of the final rolling?
Cold rolling is not consideredThe temperature at which the billet begins to roll (surface) is generally 1000-1150 degrees
Q: How are steel billets formed into other shapes?
Steel billets undergo a transformative process known as hot rolling or cold rolling to assume alternate shapes. During hot rolling, the steel billet is subjected to high temperatures and pressure as it passes through a succession of rollers to acquire the desired form. This technique is typically employed for larger and more intricate shapes like beams, channels, and angles. Conversely, cold rolling takes place at room temperature and involves guiding the steel billet through a series of rollers to gradually reduce its thickness and shape it into sheets, strips, or coils. Cold rolling is commonly utilized to fabricate thinner and more precise shapes such as plates, foils, and bars. In addition to rolling, steel billets can be transformed into diverse shapes through other processes such as forging, extrusion, and casting. Forging entails the application of pressure to the heated billet using a die or hammer, effectively shaping it into the desired form. Extrusion involves the passage of the heated billet through a die to create elongated and continuous shapes like pipes or tubes. Casting calls for the pouring of molten steel into a mold, allowing it to solidify into the desired shape. Collectively, the conversion of steel billets into alternative shapes necessitates a range of manufacturing processes including hot rolling, cold rolling, forging, extrusion, or casting, contingent upon the desired shape and properties of the final product. These processes guarantee the versatility of steel billets, enabling their transformation into a vast array of shapes suitable for various applications in construction, automotive, aerospace, and manufacturing industries.
Q: Are steel billets used in the production of sporting goods?
Yes, steel billets are commonly used in the production of sporting goods. They are often utilized to create various components such as the shafts of golf clubs or the frames of bicycles. Steel billets provide durability and strength to these sporting goods, making them suitable for intense physical activity.
Q: How are steel billets used in the manufacturing of automotive chassis?
Steel billets are an integral component in the manufacturing of automotive chassis due to their strength and durability. A steel billet is a semi-finished product that is obtained through the process of casting molten steel into a rectangular shape. These billets serve as the raw material for the fabrication of various automotive components, including chassis. The automotive chassis is the structural framework that supports the weight of the vehicle and provides stability and strength. It is responsible for bearing the load and impacts encountered during driving. Steel billets are used to create the main frame of the chassis, which forms the backbone of the vehicle. The steel billets are first heated and then passed through a series of rolling mills to shape them into the desired form, such as I-beams or C-channels, depending on the specific design requirements. This process helps to increase the strength and rigidity of the billets, making them suitable for the demanding conditions encountered by the chassis. Once the steel billets are formed into the desired shape, they are then welded together to create the chassis structure. The joints are carefully welded using various techniques like arc welding or laser welding to ensure a solid and reliable connection. This welding process ensures that the chassis can withstand the stresses and forces experienced during operation, such as acceleration, braking, and cornering. The use of steel billets in the manufacturing of automotive chassis offers several advantages. Steel is known for its high tensile strength, which allows it to withstand heavy loads and impacts without deforming or failing. It also has excellent fatigue resistance, ensuring that the chassis can withstand repeated stress cycles without compromising its structural integrity. Moreover, steel is readily available, cost-effective, and easily recyclable, making it a preferred choice for automotive manufacturers. It also provides excellent corrosion resistance, which is crucial for vehicles exposed to various weather conditions and road environments. In conclusion, steel billets play a crucial role in the manufacturing of automotive chassis by providing the necessary strength and durability. They are shaped and welded to form the main frame, which supports the weight and provides stability to the vehicle. The use of steel billets ensures that the chassis can withstand the demanding conditions of driving, ensuring the safety and performance of the vehicle.
Q: How do steel billets affect the overall cost of a project?
The overall cost of a project can be greatly affected by steel billets. To begin with, the price of steel billets can vary depending on factors like size, grade, and market demand. Higher quality or specialized billets may be more expensive, while lower quality or easily accessible ones may be more cost-efficient. Moreover, the quantity of steel billets needed for a project can significantly impact the total cost. Larger projects that require a substantial amount of steel may have to purchase a greater number of billets, thus increasing the cost. Conversely, smaller projects with fewer steel needs may be able to minimize expenses by purchasing a smaller quantity of billets. The cost of transportation and logistics also plays a role in the overall cost of steel billets. The distance between the billet supplier and the project site, as well as the availability of transportation options, can affect the final cost. Expenses such as shipping costs, handling fees, and other associated charges can add to the overall project cost. Furthermore, the quality and suitability of the steel billets for the specific project requirements can impact costs. The use of low-quality or unsuitable billets may result in delays, rework, or even project failure, leading to additional expenses. Hence, it is crucial to ensure that the chosen steel billets meet the necessary specifications and standards, even if they come with a higher initial cost. Lastly, market conditions and fluctuations in the steel industry can influence the cost of steel billets. Factors like supply and demand, currency exchange rates, and global economic trends can affect the price of billets, thereby impacting the overall project cost. In conclusion, the cost of steel billets can have a significant impact on the overall cost of a project. Factors such as the price of the billets themselves, the quantity required, transportation and logistics, quality and suitability, and market conditions all contribute to the final cost. Therefore, careful consideration and analysis of these factors are essential for effective management and budgeting of steel billets in a project.
Q: How are steel billets used in construction?
Steel billets are used in construction to produce various structural components such as beams, columns, and bars. They are first heated and then shaped into the desired form through processes like rolling or extrusion. These components provide strength and stability to buildings, making them essential for supporting and reinforcing structures in construction projects.
Q: What are the main factors affecting the thermal expansion of steel billets?
The main factors affecting the thermal expansion of steel billets include temperature, composition of the steel, and the grain structure of the material.
Q: What are the different surface defects that can occur in steel billets?
Steel billets can suffer from a variety of surface defects. Among the most common are: 1. Scale: During heating, a rough, flaky oxide layer known as scale can form on the billet's surface. This coating can negatively impact the final product's quality. 2. Cracks: Thermal stress, improper handling, or excessive cooling can cause cracks to appear on the billet's surface. These cracks can be either longitudinal or transverse and compromise the overall structural integrity of the billet. 3. Decarburization: High temperatures or chemical reactions can lead to the reduction of carbon content at the steel's surface, a process known as decarburization. This weakens the outer layer, affecting the billet's mechanical properties. 4. Pits: Corrosion, inadequate cleaning, or chemical reactions can result in small depressions or cavities on the billet's surface, known as pits. Pits can reduce strength and create localized stress concentrations. 5. Surface roughness: Improper handling, insufficient machining, or poor surface finishing can leave steel billets with uneven or rough surfaces. This can impact the final product's appearance and performance. 6. Inclusions: Non-metallic materials become trapped in the steel during manufacturing, forming inclusions. They can appear as dark spots, streaks, or irregular shapes on the billet's surface. Inclusions weaken the steel and decrease its ductility. 7. Surface contamination: Handling or storage can introduce foreign materials like dirt, oil, or grease to steel billets, leading to surface defects, corrosion, or compromised quality. Detecting and addressing these surface defects early in the manufacturing process is crucial to ensure high-quality steel billets. Various inspection techniques, including visual examination, ultrasonic testing, and magnetic particle inspection, can be used to identify and mitigate these defects.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords