• Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 1
  • Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 2
  • Square Shape Hot Rolled Mild Steel Billet 60mm-150mm System 3
Square Shape Hot Rolled Mild Steel Billet 60mm-150mm

Square Shape Hot Rolled Mild Steel Billet 60mm-150mm

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Square Shape Hot Rolled Mild Steel Billet 60mm-150mm at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Square Shape Hot Rolled Mild Steel Billet 60mm-150mmare ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Square Shape Hot Rolled Mild Steel Billet 60mm-150mm are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195/Q235/Q275/20MnSi

Certificates: ISO, SGS, BV

size:60*60/90*90/100*100/120*120/150*150

Length: 6m/12m,

Packaging: Export packing, nude packing, bundled

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045 

≤0.045

≤0.35 

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Q:What are the advantages of using steel billets over other materials?
Using steel billets instead of other materials has several advantages. To begin with, steel billets possess remarkable strength and durability. Steel is renowned for its high tensile strength, making it perfect for applications that require bearing heavy loads. This property enables steel billets to withstand substantial weights and resist deformation, ensuring the integrity and longevity of structures. Additionally, steel billets offer exceptional machinability and formability. Steel is an adaptable material that can be easily shaped and molded into various forms, allowing for customization and flexibility in design. This makes it suitable for a wide range of applications in industries such as construction, automotive, and manufacturing. Moreover, steel billets exhibit superior resistance to heat and corrosion. Steel inherently resists heat and can endure high temperatures without compromising its structural properties. This makes it suitable for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Furthermore, steel possesses excellent corrosion resistance, guaranteeing its longevity and minimizing maintenance costs. Another advantage of steel billets is their recyclability. Steel is one of the most recycled materials globally, boasting a high recycling rate. This not only reduces the environmental impact of steel production but also makes it a more sustainable choice. Moreover, the recycling process does not compromise the quality or performance of steel, allowing for continuous reuse. Lastly, steel billets offer cost-effectiveness. Despite their numerous advantages, steel billets remain a cost-effective material in comparison to other alternatives. Their widespread availability, ease of manufacturing, and recyclability contribute to their affordability. Furthermore, the durability and low maintenance requirements of steel billets result in long-term cost savings for users. In conclusion, the utilization of steel billets presents various advantages in terms of exceptional strength, machinability, heat and corrosion resistance, recyclability, and cost-effectiveness. These qualities establish steel billets as the preferred choice in various industries, ensuring reliable and long-lasting performance.
Q:What are the different types of steel billet rolling techniques?
The manufacturing process utilizes various steel billet rolling techniques to shape the steel into desired forms and dimensions. Among the commonly employed techniques are the following: 1. Hot rolling: This technique, widely used, involves heating the steel billet to high temperatures and passing it through a series of rolling mills. By reducing thickness and increasing length, hot rolling achieves the desired shape. 2. Cold rolling: Steel billets are rolled at room temperature in this technique. It yields steel with precise dimensions and a smooth surface finish. It is commonly used for producing steel sheets, strips, and bars. 3. Ring rolling: Seamless steel rings are produced using this technique. The steel billet is heated and then rolled between two rotating rolls that gradually shape the billet into a ring. Bearings, gears, and flanges are commonly produced using ring rolling. 4. Continuous casting and rolling: In this technique, molten steel is continuously cast into billets, which are then directly rolled into desired shapes. It eliminates the need for separate casting and rolling processes, making it a more efficient and cost-effective technique. 5. Cross-rolling: This technique is employed to produce steel billets with non-uniform cross-sections. The billet is rolled between two rolls with different profiles, resulting in a billet of the desired shape. 6. Skew rolling: Skew rolling is specifically used to produce steel balls utilized in various industries like mining and cement production. The steel billet is rolled between two rotating rolls at an angle, creating a helical motion that forms the ball shape. These examples represent only a fraction of the available steel billet rolling techniques. Each technique offers unique advantages and is selected based on the desired final product and manufacturing requirements.
Q:How do steel billets contribute to the manufacturing of renewable energy systems?
Steel billets are essential for the manufacturing of renewable energy systems as they are used to create structural components such as frames, supports, and turbine towers. These billets provide the necessary strength and durability to withstand the harsh environmental conditions that renewable energy systems are exposed to. Additionally, steel billets can be recycled, making them a sustainable choice for the production of renewable energy systems.
Q:How are steel billets used in the production of electrical appliances?
The production of electrical appliances utilizes steel billets in multiple ways. Firstly, these billets serve as the primary material for manufacturing various electrical appliance components. Depending on the appliance's specific requirements, the billets can be formed and shaped into sheets, plates, bars, or wires. For instance, thin sheets rolled from steel billets are utilized in constructing the outer casing or body of appliances like refrigerators, washing machines, or air conditioners. These sheets offer durability, strength, and protection to the internal components of the appliance. Moreover, steel billets can undergo further processing to create bars or wires essential for electrical connections, circuit breakers, or switches. These components demand high electrical conductivity, heat resistance, and mechanical strength, all of which steel billets can provide. Furthermore, steel billets are crucial in the manufacturing of motors and transformers, integral to the operation of electrical appliances. These billets are shaped and machined to produce specific parts such as rotor cores, stator cores, or laminated cores, necessary for the efficient conversion of electrical energy. In conclusion, steel billets are of utmost importance in the production of electrical appliances as they serve as the essential raw material for creating casings, bars, wires, and cores. The properties of strength, durability, electrical conductivity, and heat resistance make them an ideal choice for ensuring the reliability and functionality of electrical appliances.
Q:What are the challenges in welding steel billets?
There are several challenges that can arise when welding steel billets. One of the main challenges is ensuring proper heat distribution during the welding process. Steel billets are often large and thick, which can make it difficult to evenly distribute heat throughout the material. This can result in inconsistencies in the weld, leading to weak spots or even failure of the joint. Another challenge is the potential for distortion and warping of the billet during the welding process. As heat is applied to the steel, it can cause the material to expand and contract, leading to unwanted changes in shape and dimensions. This can be particularly problematic when welding large or complex structures, as maintaining the desired shape and dimensions becomes critical. Additionally, steel billets can contain impurities and contaminants that can affect the quality of the weld. These impurities, such as sulfur, phosphorus, and other elements, can lead to the formation of brittle zones or other defects in the weld. Proper cleaning and preparation of the billet surface, as well as using appropriate welding techniques and filler materials, are necessary to mitigate these challenges. Furthermore, the high carbon content often found in steel billets can make them prone to cracking during the welding process. Carbon acts as a hardening agent in steel and can increase its susceptibility to cracking, especially if proper preheating and post-weld heat treatment procedures are not followed. Controlling the cooling rate and implementing stress-relieving techniques are essential in preventing cracking and ensuring the integrity of the weld. Lastly, the sheer size and weight of steel billets can present logistical challenges during the welding process. Handling and positioning these heavy objects require specialized equipment and skilled operators to ensure safety and accuracy. Additionally, the need for precise alignment and fit-up can be more challenging with large billets, requiring careful planning and execution. In conclusion, welding steel billets poses challenges such as heat distribution, distortion and warping, impurities and contaminants, carbon-induced cracking, and logistical issues. Overcoming these challenges requires expertise, proper equipment, and adherence to appropriate welding techniques and procedures.
Q:What are the different methods used for heating steel billets?
There are several methods used for heating steel billets including induction heating, flame heating, and electric resistance heating.
Q:What are the different shapes available for steel billets?
Steel billets are commonly manufactured in various shapes to meet the diverse needs of different industries. Some of the different shapes available for steel billets include: 1. Square Billets: These are billets with equal sides, forming a square shape. Square billets are widely used in the construction industry for manufacturing beams, columns, and other structural components. 2. Round Billets: These billets have a circular cross-section and are commonly used in the production of seamless pipes, tubes, and rods. Round billets are also utilized in the automotive and aerospace industries for manufacturing various components. 3. Rectangular Billets: These billets have unequal sides, forming a rectangular shape. Rectangular billets are often utilized in the construction industry for manufacturing frames, window profiles, and other structural elements. 4. Hexagonal Billets: Hexagonal billets have six equal sides, forming a hexagon shape. These billets are commonly used in the production of bolts, nuts, and other fasteners that require a hexagonal shape for proper fitting. 5. Octagonal Billets: Octagonal billets have eight equal sides, forming an octagon shape. These billets are often used in the manufacturing of special components and tools that require a unique shape for specific applications. 6. Slab Billets: Slab billets have a rectangular cross-section with a larger width compared to their height. Slab billets are primarily used for producing flat-rolled steel products such as sheets, plates, and coils. 7. Bloom Billets: Bloom billets have a square or rectangular cross-section with a larger size compared to regular billets. These billets are commonly used in the production of sections, bars, and rails. The choice of the steel billet shape depends on the specific requirements of the desired end product and the manufacturing process involved. The versatility of steel billets makes them suitable for a wide range of applications in various industries.
Q:How are steel billets tested for quality?
Steel billets are tested for quality through various methods such as visual inspection, dimensional analysis, mechanical testing, and chemical analysis. Visual inspection ensures that the billets are free from surface defects, cracks, and other abnormalities. Dimensional analysis checks whether the billets meet the specified size and shape requirements. Mechanical testing involves evaluating the billets' strength, hardness, and other mechanical properties. Chemical analysis assesses the composition of the steel to ensure it meets the required standards. These comprehensive tests help ensure the quality and reliability of steel billets.
Q:What are the different types of defects that can occur during steel billet production?
During steel billet production, various types of defects can occur that may affect the quality and performance of the final product. Some of the common defects observed in steel billets are: 1. Surface Defects: These defects occur on the surface of the billet and can include scales, cracks, pits, scars, and slivers. Surface defects can be caused by improper handling, poor lubrication, inadequate heating, or contamination during the manufacturing process. 2. Internal Defects: Internal defects occur within the billet and can be more challenging to detect. Examples of internal defects include voids, porosity, inclusions, and segregation. Internal defects can arise due to improper alloying, inadequate mixing, or improper casting and solidification processes. 3. Shape Defects: Shape defects refer to any deviation from the desired dimensions or geometry of the billet. These defects can include bending, bowing, twisting, or excessive tapering. Shape defects can be caused by improper rolling or cooling processes, inadequate maintenance of rolling equipment, or poor billet handling. 4. Chemical Composition Defects: Steel billets must meet specific chemical composition requirements to ensure desired material properties. Defects in chemical composition can occur due to improper mixing of raw materials, incorrect temperature control, or contamination during the manufacturing process. These defects can negatively impact the mechanical properties, such as strength, ductility, or corrosion resistance, of the final product. 5. Incomplete Solidification: Incomplete solidification can lead to defects like centerline segregation or shrinkage cavities. These defects occur when the cooling rate is too fast or uneven, preventing the complete solidification of the billet. Incomplete solidification can weaken the billet structure, affecting its overall integrity and performance. 6. Dimensional Defects: Dimensional defects refer to deviations in the size, length, width, or thickness of the billet. These defects can occur due to inaccurate measurement or control during the manufacturing process. Dimensional defects can impact the fitment or compatibility of the billet in subsequent processes or applications. It is crucial for steel billet manufacturers to implement stringent quality control measures to minimize the occurrence of these defects. Regular inspections, process optimization, and adherence to industry standards and best practices can help mitigate defects and ensure the production of high-quality steel billets.
Q:How are steel billets recycled or reused?
Steel billets can be recycled or reused in several ways. One common method is through the process of melting and casting, where the billets are melted down and formed into new steel products. They can also be used as raw material in the production of other steel products, such as bars, rods, or pipes. Additionally, steel billets can be further processed and shaped into various components for construction, automotive, or manufacturing industries. This recycling and reusing of steel billets helps to conserve resources, reduce waste, and lower the environmental impact of steel production.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords