• Raw Material Steel Rectangle Billet Bars System 1
  • Raw Material Steel Rectangle Billet Bars System 2
Raw Material Steel Rectangle Billet Bars

Raw Material Steel Rectangle Billet Bars

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Range of thickness: 150-240 - mm +/- 5 mm width range: 880-1530 - mm +/- 20 mm

Length: 3700-10000 - mm +/- 500 - mm

Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm

Length: 9000 mm

Section of tolerance: billet: 1.0 +/- 2.0-1.0 +/- 1.0 mm slab: width: +/- 2.0 mm thickness: +/- 3.0 mm

The length tolerance: +/- 200 mm

Section diagonal tolerance: 3.5-8.0 MM

Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm

Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm

Surface tilt: no more than billet section 0.1

Bending: every 1 m length is not more than 10 mm.

 

Notes:

1, The theoretical weights in the list, base on the density of 7.85 g/cm3.

2, Formula for theoretical weight of Square bar: (length of a side)2 * 0.00785

3, The numbers with mean that they are not regular or we don’t offer them.

-Regular length of Square Bar:

Steel

Length of a side (mm)

Length of steel (m)

Normal steel

< 25

4~10

> 25

3~9

Steel of high quality

All measure

2~6

Tool steel >75

1~6

Usage/Applications

-The Square Bar is normally used as structure steel.

-Row material for other structure steel like steel angles, channels, I-beams, H-beams, etc…

Packaging & Delivery

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks: We make tag marks and color marks. The tag marks with white background and red company logo will be tied up to each bundle of the products. The information is usually including basic information of products and company and other information requested by customers. As for color marks, we will paint both ends of bundles to make sure that it will be more convenient for customers to distinguish them from other products.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

Transportation

-The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products are usually transported to the nearest port from the production place.

 

Q: What are the potential applications of steel billets in the textile aftermarket?
Steel billets have a wide range of potential applications in the textile aftermarket. One potential application is in the production of textile machinery and equipment. Steel billets can be used to manufacture various components of textile machinery, such as gears, shafts, and frames. The high strength and durability of steel make it an ideal material for these applications, as it can withstand the rigorous conditions of textile production. Another potential application of steel billets in the textile aftermarket is in the production of textile accessories and hardware. Steel billets can be used to create a wide range of accessories, such as buttons, zippers, and buckles. These accessories are essential in the textile industry and require materials that are strong and resistant to wear and tear. Additionally, steel billets can be used in the production of textile molds and tooling. Textile molds are used to create intricate patterns and designs on fabrics, while tooling is used for cutting, shaping, and finishing textile products. Steel billets can provide the necessary strength and stability required for these applications. Furthermore, steel billets can be used in the construction of textile warehouses and storage facilities. The high load-bearing capacity of steel makes it an excellent material for constructing durable and secure storage structures. These warehouses can be used to store textile products, raw materials, and machinery, ensuring their safety and longevity. Overall, the potential applications of steel billets in the textile aftermarket are vast. From machinery and equipment production to accessories, molds, tooling, and storage facilities, steel billets offer strength, durability, and reliability, making them an essential material in the textile industry.
Q: What are the factors that affect the price of steel billets?
There are several factors that can affect the price of steel billets. 1. Raw material costs: The cost of iron ore, coal, and other raw materials used in steel production can significantly impact the price of steel billets. Any fluctuations in these costs can directly influence the price of steel billets. 2. Demand and supply: The supply and demand dynamics of steel billets play a crucial role in determining their price. An increase in demand for steel products, such as construction materials or automotive parts, can drive up the price of steel billets. Conversely, an oversupply of steel billets can lead to a decrease in price. 3. Energy costs: The cost of energy, including electricity and fuel, required for steel production can impact the price of steel billets. Fluctuations in energy prices can affect the overall production cost and, subsequently, the price of steel billets. 4. Currency exchange rates: Steel billets are often traded on international markets, and currency exchange rates can have a significant impact on their price. If the currency of the country producing steel billets weakens against other currencies, it can make the product more affordable and potentially increase demand. 5. Trade policies and tariffs: Government regulations, trade policies, and tariffs imposed on steel billets can influence their price. Tariffs can increase the cost of imported steel billets, making domestically produced steel billets relatively more competitive and potentially leading to higher prices. 6. Economic factors: The overall state of the economy, both locally and globally, can impact the price of steel billets. During periods of economic growth, there is typically higher demand for steel products, which can drive up the price of steel billets. Conversely, during economic downturns, demand may decrease, resulting in lower prices. 7. Technological advancements: Innovations in steel production technology can impact the price of steel billets. Advancements that increase efficiency and reduce production costs can potentially lead to lower prices, while new technologies that improve the quality or properties of steel billets may command a higher price. It is important to note that these factors are interconnected and can influence each other. Therefore, understanding the complex relationship between these factors is essential in analyzing and predicting the price of steel billets.
Q: Can steel billets be customized in terms of shape and size?
Yes, steel billets can be customized in terms of shape and size. Steel billets are semi-finished products that are typically rectangular in shape and are used as raw material for various manufacturing processes. However, they can be altered to meet specific requirements by undergoing a process known as billet rolling or cross-rolling. During this process, the steel billets are passed through a series of specially designed rolls that apply pressure and force to reshape them. This allows for the customization of the billets into different shapes and sizes, such as square, round, or hexagonal, based on the desired end product. Additionally, the size of the steel billets can also be customized. The initial dimensions of the billets can be adjusted by either increasing or decreasing their length, width, and height. This flexibility in customization enables manufacturers to produce steel billets that best suit their specific production needs. In conclusion, steel billets can indeed be customized in terms of both shape and size through the process of billet rolling. This allows manufacturers to adapt the billets to their desired specifications, enabling them to create a wide range of products using steel as a raw material.
Q: What are the main factors affecting the machinability of stainless steel billets?
The main factors affecting the machinability of stainless steel billets include the composition and microstructure of the steel, the hardness and work hardening characteristics, the cutting tool material and geometry, the cutting parameters such as cutting speed, feed rate, and depth of cut, and the cooling and lubrication methods used during machining.
Q: How do steel billets differ from steel ingots?
Steel billets and steel ingots, both intermediate forms of steel in the steel manufacturing process, have distinct differences. To begin with, the shape and size of steel billets and steel ingots vary. Steel billets are typically square or rectangular, with a cross-sectional area of roughly 36 square inches. They are long and slim, measuring approximately 6 to 12 inches in width and 1 to 12 feet in length. Conversely, steel ingots are generally larger and possess irregular shapes. Depending on the production method employed, they can be cylindrical, rectangular, or a combination of shapes. Steel ingots tend to be much larger than billets, weighing anywhere from several tons to over 100 tons. Secondly, the production process for steel billets and steel ingots also differs. Steel billets are commonly formed through continuous casting, which involves pouring molten steel into a mold and subsequently cooling and solidifying it to shape the billet. This process ensures a more precise and uniform shape, size, and composition. In contrast, steel ingots are typically produced via ingot casting, where molten steel is poured into a sizable mold and left to solidify. This method is often utilized for larger ingots, allowing for a more adaptable and flexible production process. Lastly, the purpose and usage of steel billets and steel ingots also vary. Steel billets are frequently employed as raw materials for further processing and shaping into various steel products, such as bars, rods, wire, and tubes. They serve as the initial stage in the production of finished steel goods. Conversely, steel ingots are commonly utilized for more specialized applications, such as the production of large steel components, forgings, or specialty alloys. Their larger size and irregular shape make them suitable for demanding applications of this nature. In conclusion, steel billets and steel ingots differ in terms of their shape, size, production process, and usage. While steel billets are slender, square or rectangular, and used as raw material for further processing, steel ingots are larger, possess irregular shapes, and are often employed for specialized applications.
Q: Can steel billets be used in the production of railway infrastructure?
Yes, steel billets can be used in the production of railway infrastructure. Steel billets are semi-finished steel products that can be further processed into various railway components such as rails, sleepers, and fasteners. Due to their high strength, durability, and ability to withstand heavy loads and harsh environmental conditions, steel billets are commonly used in the manufacturing of railway infrastructure to ensure the safety and efficiency of train operations.
Q: What are the potential applications of steel billets in the agricultural sector?
The agricultural sector can benefit greatly from the various potential applications of steel billets. One primary use of steel billets in agriculture involves their utilization in the manufacturing of farm equipment and machinery. Plows, cultivators, and seeders, which are essential for tilling the soil, planting seeds, and maintaining agricultural land, can be produced using steel billets to create durable and sturdy components. Steel billets also find usefulness in the construction of storage structures on farms. Due to its strength and durability, steel is an ideal material for constructing grain silos, barns, and sheds. These structures provide long-lasting and reliable solutions for storing crops, livestock, and equipment. Furthermore, steel billets can be used to fabricate fences and gates for animal enclosures. Steel fences offer superior strength and security, ensuring the safety of farm animals and preventing them from wandering off. These fences are also resistant to corrosion and capable of enduring harsh weather conditions. Moreover, steel billets can be employed in the construction of irrigation systems and water management infrastructure on farms. Steel pipes and fittings are commonly used to transport water from a source to the fields, promoting proper irrigation and efficient water distribution. Lastly, steel billets can be employed in the production of machinery used for processing agricultural products. Grain mills, threshers, and sorting machines, for example, can be manufactured with steel components, aiding in the processing and packaging of crops. Overall, the potential applications of steel billets in the agricultural sector are extensive and diverse. From farm equipment and storage structures to fencing and irrigation systems, steel billets play a vital role in enhancing efficiency, durability, and productivity in agriculture.
Q: What is the role of steel billets in the production of automotive components?
The production of automotive components heavily relies on steel billets, which serve as essential raw materials. These semi-finished metal products play a vital role in manufacturing various parts utilized in the automotive industry. To begin with, engine components such as crankshafts, camshafts, and connecting rods are manufactured using steel billets. These components are crucial for the smooth functioning of the engine. Steel's strong and durable properties make it an ideal material for these parts, ensuring their ability to withstand the high temperatures and pressures within the engine. In addition, chassis and suspension components are produced using steel billets. These components, including control arms, steering knuckles, and axle shafts, are responsible for the vehicle's stability, maneuverability, and overall performance. Steel's high strength-to-weight ratio and excellent fatigue resistance make it suitable for these safety-critical components. Moreover, transmission and drivetrain components also rely on steel billets. Gears, shafts, and clutch plates, which are essential for transmitting power from the engine to the wheels, are manufactured using steel billets. Steel's toughness, wear resistance, and ability to handle high torque loads make it an ideal material for these parts, ensuring their durability and reliability. Furthermore, body and interior components are manufactured using steel billets. These components can include door hinges, brackets, seat frames, and various structural parts. Steel's versatility, formability, and corrosion resistance make it an excellent choice for these components, providing strength and protection to the vehicle's occupants. In summary, steel billets serve as the foundation for the production of a wide range of automotive components. Their strength, durability, and reliability are essential for critical parts in engines, chassis, transmission systems, and body structures. Without steel billets, the automotive industry would face challenges in producing high-quality and safe vehicles.
Q: How are steel billets used in the production of wire rods and bars?
Steel billets are an essential component in the production of wire rods and bars. These billets, which are semi-finished metal products, serve as the raw material for manufacturing various types of steel products. To begin the production process, steel billets are heated to a high temperature in a furnace, known as a reheat furnace, until they reach the desired temperature for rolling. Once heated, the billets are then passed through a series of rolling mills, where they undergo hot rolling. During the hot rolling process, the steel billets are gradually shaped into wire rods or bars by repeatedly passing them through a set of rollers. This process helps to reduce the billet's cross-sectional area and increase its length, resulting in the desired shape and dimensions of the wire rods or bars. After the initial rolling, the wire rods or bars may undergo additional processes, such as cooling, surface treatment, and further shaping or cutting, depending on the specific requirements of the end product. These additional steps help to improve the mechanical properties and surface finish of the wire rods or bars. Once the wire rods or bars have been processed, they can be used in a wide range of applications. Wire rods, for example, are commonly used in the production of wires, nails, fencing, and various types of reinforcement materials. Bars, on the other hand, are often utilized in construction, manufacturing machinery, automotive parts, and other structural applications. In summary, steel billets play a crucial role in the production of wire rods and bars. They are heated and then shaped through the hot rolling process, resulting in the desired dimensions and properties of the end product. These wire rods and bars are then used in various industries for different applications, contributing to the overall development and functionality of numerous products and structures.
Q: How do steel billets contribute to the manufacturing of industrial machinery?
The manufacturing of industrial machinery heavily relies on steel billets, which are semi-finished steel products molded into specific shapes and sizes. These billets serve as the raw material for producing various components and parts used in industrial machinery. To begin with, steel billets provide the necessary strength and durability required by industrial machinery. The high tensile strength and toughness of steel make it an ideal choice for withstanding heavy loads, vibrations, and extreme conditions that machinery often faces. By utilizing steel billets, manufacturers can ensure that the machinery they produce is capable of enduring these demanding conditions, thus increasing its reliability and longevity. Additionally, steel billets can be easily molded and shaped into different forms, allowing for the production of intricate and complex components. Precision-engineered parts tailored to specific functions and applications are often necessary for industrial machinery. Steel billets can be cast or forged into these intricate shapes, guaranteeing that the machinery operates with optimal efficiency and accuracy. Furthermore, steel billets possess excellent machinability, meaning they can be easily cut, drilled, and shaped using various machining techniques. This capability enables the creation of intricate details and tolerances required for the precise functioning of industrial machinery. The ability to machine steel billets with precision grants manufacturers the opportunity to produce components that fit together seamlessly, minimizing any potential performance issues. Moreover, steel billets offer a cost-effective solution for manufacturing industrial machinery. Steel is readily available and relatively inexpensive compared to other materials. Its superior strength-to-weight ratio also allows manufacturers to design lighter machinery without compromising its structural integrity. This reduction in manufacturing costs also makes the machinery more portable and easier to transport. Furthermore, steel billets provide excellent corrosion resistance, which is vital for industrial machinery operating in harsh environments. The protective oxide layer that forms on the surface of steel billets helps prevent rust and corrosion, ensuring that the machinery remains in optimal working condition even in challenging situations. In conclusion, the strength, durability, machinability, cost-effectiveness, and corrosion resistance offered by steel billets make them essential in the manufacturing of industrial machinery. These properties enable manufacturers to produce reliable, precise, and long-lasting machinery capable of withstanding demanding industrial applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords