• Steel Square Billet Bar For Rebar Production System 1
  • Steel Square Billet Bar For Rebar Production System 2
Steel Square Billet Bar For Rebar Production

Steel Square Billet Bar For Rebar Production

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Range of thickness: 150-240 - mm +/- 5 mm width range: 880-1530 - mm +/- 20 mm

Length: 3700-10000 - mm +/- 500 - mm

Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm

Length: 9000 mm

Section of tolerance: billet: 1.0 +/- 2.0-1.0 +/- 1.0 mm slab: width: +/- 2.0 mm thickness: +/- 3.0 mm

The length tolerance: +/- 200 mm

Section diagonal tolerance: 3.5-8.0 MM

Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm

Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm

Surface tilt: no more than billet section 0.1

Bending: every 1 m length is not more than 10 mm.

 

Notes:

1, The theoretical weights in the list, base on the density of 7.85 g/cm3.

2, Formula for theoretical weight of Square bar: (length of a side)2 * 0.00785

3, The numbers with mean that they are not regular or we don’t offer them.

-Regular length of Square Bar:

Steel

Length of a side (mm)

Length of steel (m)

Normal steel

< 25

4~10

> 25

3~9

Steel of high quality

All measure

2~6

Tool steel >75

1~6

Usage/Applications

-The Square Bar is normally used as structure steel.

-Row material for other structure steel like steel angles, channels, I-beams, H-beams, etc…

Packaging & Delivery

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks: We make tag marks and color marks. The tag marks with white background and red company logo will be tied up to each bundle of the products. The information is usually including basic information of products and company and other information requested by customers. As for color marks, we will paint both ends of bundles to make sure that it will be more convenient for customers to distinguish them from other products.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

Transportation

-The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products are usually transported to the nearest port from the production place.

Q: What are the different types of steel billet handling equipment?
There are several different types of steel billet handling equipment used in various stages of the steel production process. These equipment are designed to efficiently move and transport steel billets, which are semi-finished metal products used for further processing. 1. Overhead Cranes: Overhead cranes are commonly used in steel mills and foundries for the handling and transportation of steel billets. These cranes have a high lifting capacity and can move billets from one location to another within the facility. 2. Mobile Cranes: Mobile cranes are versatile and can be used for handling steel billets in both indoor and outdoor environments. They are equipped with hydraulic systems for lifting and maneuvering heavy loads. 3. Forklifts: Forklifts are commonly used in warehouses and storage facilities to handle steel billets. They have forks at the front that can be raised and lowered to lift and move the billets. 4. Grab Buckets: Grab buckets are used for handling bulk materials, including steel billets. They have a bucket-like structure that can be opened and closed to grab and release the billets. These are often used in ports and shipping yards for loading and unloading billets from ships. 5. Conveyor Systems: Conveyor systems are used for continuous movement of steel billets along a predefined path. They can be used to transport billets between different stages of the production process or to load and unload them from trucks or trains. 6. Roller Tables: Roller tables are used for transferring steel billets from one conveyor or machine to another. They typically consist of a series of rollers that allow for smooth and controlled movement of the billets. 7. Magnetic Lifters: Magnetic lifters use an electromagnetic field to lift and transport steel billets. They are particularly useful when handling ferrous materials, as the magnetic force allows for secure gripping and easy movement. 8. Palletizers: Palletizers are used to stack and organize steel billets on pallets. They can automatically arrange the billets in a specific pattern, making them suitable for storage or transportation. Each type of equipment has its own advantages and is used in specific applications based on the requirements of the steel production process. The selection of the appropriate handling equipment depends on factors such as the size and weight of the billets, the distance they need to be transported, and the specific needs of the facility.
Q: What are the environmental impacts of steel billet production?
Steel billet production, being a process that yields semi-finished steel products, can have diverse consequences on the environment. One notable impact is the release of greenhouse gases during the manufacturing of steel. This occurs when iron ore is melted, emitting carbon dioxide (CO2) into the atmosphere. CO2 is a significant contributor to global warming and climate change. Another environmental effect of steel billet production is the consumption of natural resources. The steel industry requires substantial amounts of water and energy to manufacture billets. The extraction and processing of raw materials like iron ore and coal can also cause the destruction of habitats and disruption of ecosystems. Moreover, the production of steel billets can lead to pollution of both air and water. Burning fossil fuels during the manufacturing process releases various pollutants, including sulfur dioxide (SO2) and nitrogen oxides (NOx), which contribute to acid rain and respiratory issues. Additionally, the discharge of wastewater from steel production can contain heavy metals and other contaminants, polluting rivers and harming aquatic life. Steel billet production also generates solid waste, such as slag and dust, which present waste management challenges. These waste materials may contain toxic substances, necessitating proper handling and disposal to prevent environmental contamination. Several measures can be taken to alleviate the environmental impacts of steel billet production. The adoption of cleaner technologies, such as energy-efficient furnaces and recycling processes, can help reduce energy consumption and emissions. Implementing rigorous environmental management systems and investing in pollution control technologies can also minimize air and water pollution. Additionally, promoting the use of recycled steel and sustainable sourcing of raw materials can aid in conserving natural resources and reducing the environmental footprint of steel billet production.
Q: Are steel billets used in the production of household goods?
Typically, steel billets find their purpose in a range of industries, like construction, automotive, and manufacturing, rather than in the production of household goods. These semi-finished products serve as raw materials and are commonly transformed through hot rolling into diverse shapes like bars, rods, or sheets. Only after undergoing further processing can they be fashioned into the desired household goods. Manufacturers of household goods usually prefer specific steel variants, such as stainless steel or carbon steel, which have been processed and shaped according to the specific requirements of the product.
Q: What are the main challenges in the distribution of steel billets?
The distribution of steel billets faces several challenges that can impact the overall efficiency and effectiveness of the process. Some of the main challenges include: 1. Logistics and transportation: Steel billets are heavy and bulky, requiring specialized equipment and handling. The transportation of these materials can be challenging, especially in remote areas or regions with poor infrastructure. The coordination of transportation modes, scheduling, and ensuring timely delivery can be a complex task. 2. Storage and inventory management: Steel billets often need to be stored for a certain period of time before they are processed or further distributed. Proper storage facilities with adequate capacity and appropriate conditions, such as temperature control and protection from moisture, are crucial. Managing inventory levels to avoid excess or shortage is also a key challenge. 3. Quality control: Ensuring the quality of steel billets throughout the distribution process is essential. Any damage or contamination during handling or transportation can affect the properties and performance of the final steel products. Implementing strict quality control measures, inspections, and monitoring processes is crucial to maintain the desired quality standards. 4. Market fluctuations and demand forecasting: The steel industry is highly influenced by market fluctuations and demand volatility. Accurate demand forecasting can be challenging due to various factors such as economic conditions, construction activities, and geopolitical events. Failure to predict demand accurately can result in excess inventory or stockouts, leading to financial losses. 5. Environmental regulations and sustainability: The steel industry is under increasing pressure to reduce its environmental impact and embrace sustainable practices. Compliance with environmental regulations, such as emissions control and waste management, can present challenges in distribution. Implementing eco-friendly transportation methods and exploring sustainable packaging options can help address these challenges. 6. Global competition and pricing: The distribution of steel billets is affected by global competition and pricing pressures. Steel producers and distributors must constantly analyze and adapt to market trends, competitor behavior, and price fluctuations. Maintaining competitive pricing while ensuring profitability can be a significant challenge in the steel billet distribution business. Overcoming these challenges requires coordination among various stakeholders in the supply chain, including steel manufacturers, distributors, logistics providers, and end-users. Continuous improvement, technological advancements, and effective communication are essential to mitigate these challenges and optimize the distribution of steel billets.
Q: What are the different methods of steel billet surface etching?
Various industries commonly use several different methods for steel billet surface etching. These methods encompass chemical etching, electrolytic etching, and laser etching. 1. Chemical etching involves the immersion of the steel billet in a chemical solution, typically an acid, that selectively eliminates a thin layer of material from the surface. The specific chemical solution utilized depends on the etching process requirements, such as desired depth and pattern. Hydrochloric acid, nitric acid, and ferric chloride are commonly employed chemicals for steel etching. 2. Electrolytic etching entails passing an electric current through the steel billet while it is submerged in an electrolyte solution. The current facilitates a controlled dissolution of the surface metal, resulting in the desired etched pattern. Electrolytic etching provides precise control over the process and can generate intricate and detailed designs. It is often employed for marking or labeling steel billets with logos, serial numbers, or other identification marks. 3. Laser etching is a highly precise and non-contact method of surface etching. It involves the use of a laser beam to selectively remove material from the steel billet surface. Computer software directs and controls the laser beam, enabling intricate and customizable designs. Laser etching is suitable for creating permanent markings, logos, or patterns on steel billets. It finds wide application in industries such as automotive, aerospace, and electronics. Each method has its own advantages and limitations, and the choice of etching method depends on factors like the desired design, the material properties of the steel billet, and the production requirements.
Q: Charcoal classification
Hard charcoal. By hardwood such as Fagaceae Quercus, Castanopsis trees, secondary birch and etc..Broad-leaved charcoal. Charcoal made from a mixture of hard and soft hardwood.Pine charcoal. Carbon fired from pine or other needle wood. In addition to bamboo and bamboo charcoal burning with shells, stones (coconut shell, peach stone charcoal etc.) wood raw material firing. Charcoal collected from household stoves in the cell known as carbon. If the charcoal is crushed and mixed with proper adhesive, and then pressed, formed and roasted, the deposit is made. According to the burning process of silica and carbon black.
Q: What are the main factors affecting the surface roughness of steel billets?
The surface roughness of steel billets can be influenced by several factors. Firstly, the quality of the raw materials used in the production of the billets plays a crucial role. If the steel used is of poor quality or contains impurities, it can result in a rougher surface finish. Secondly, the manufacturing process itself can impact the surface roughness. For instance, if the billets are not properly cooled or if there are inconsistencies in the temperature during the cooling process, it can lead to uneven surfaces and increased roughness. Furthermore, the machining operations performed on the billets can also contribute to their surface roughness. Factors such as the cutting speed, feed rate, and tool condition can affect the final surface finish. If the cutting parameters are set incorrectly or if the cutting tools are worn out, it can result in a rougher surface texture. Additionally, the lubrication and cooling methods used during machining can affect the surface roughness. Proper lubrication helps reduce friction and heat generation, resulting in smoother surfaces. Inadequate lubrication or cooling can cause increased friction, leading to rougher surfaces. Moreover, the maintenance and condition of the machinery used in the manufacturing process can impact the surface roughness. If the equipment is not well-maintained or if there are issues with the precision and stability of the machines, it can result in surface irregularities and roughness. Lastly, the handling and storage of the steel billets can also influence their surface roughness. If the billets are mishandled or exposed to harsh environmental conditions, such as moisture or extreme temperatures, it can lead to corrosion or surface damage, resulting in a rougher surface finish. Overall, the main factors affecting the surface roughness of steel billets include the quality of raw materials, the manufacturing process, machining operations, lubrication and cooling methods, machinery condition, and handling/storage practices. Understanding and controlling these factors are essential for achieving the desired surface finish in steel billet production.
Q: How do steel billets compare to other types of raw materials in manufacturing?
Steel billets are widely recognized as one of the most versatile and commonly used raw materials in manufacturing industries. When compared to other types of raw materials, steel billets offer several advantages that make them highly desirable. Firstly, steel billets have exceptional strength and durability. This characteristic makes them suitable for a wide range of applications, including construction, automotive, and machinery manufacturing. Steel billets are known for their high tensile strength, which ensures the structural integrity of the final product. Secondly, steel billets have excellent heat resistance properties. This makes them ideal for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Steel billets can withstand high temperatures without compromising their mechanical properties, ensuring the longevity and reliability of the manufactured products. Additionally, steel billets are highly malleable and can be easily shaped into various forms through processes like rolling, forging, or extrusion. This versatility allows manufacturers to create complex and intricate parts, components, and structures, meeting the diverse needs of different industries. Moreover, steel billets are readily available in large quantities, making them a cost-effective choice for manufacturing. The abundance of steel billets in the market ensures a stable supply chain and helps manufacturers avoid potential disruptions caused by material shortages. Lastly, steel billets are known for their recyclability, making them an environmentally friendly choice. Steel is one of the most recycled materials globally, and the use of steel billets in manufacturing contributes to reducing the environmental impact of waste disposal and conserving natural resources. In summary, steel billets outshine other types of raw materials in manufacturing due to their exceptional strength, heat resistance, malleability, cost-effectiveness, and recyclability. These qualities make steel billets a preferred choice for a wide range of industries, offering reliability, versatility, and sustainability in the manufacturing process.
Q: What are the common defects in billet? What's the cause?
4. Tungsten inclusion;Six, arc scratch and heat crack and overlap: 1:Two reheat cracks 3 cracks
Q: What are the different shapes of steel billets?
Steel billets can come in various shapes, including square, round, rectangular, and hexagonal.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords