• Prime quality square alloy steel billet 100mm Q235 System 1
  • Prime quality square alloy steel billet 100mm Q235 System 2
  • Prime quality square alloy steel billet 100mm Q235 System 3
  • Prime quality square alloy steel billet 100mm Q235 System 4
  • Prime quality square alloy steel billet 100mm Q235 System 5
  • Prime quality square alloy steel billet 100mm Q235 System 6
Prime quality square alloy steel billet 100mm Q235

Prime quality square alloy steel billet 100mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 100mm Q235

 Prime quality square alloy steel billet 100mm Q235

Description of Prime quality square alloy steel billet 100mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 100mm Q235

 

Main Feature of Prime quality square alloy steel billet 100mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 100mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 100mm Q235

 

Specifications of Prime quality square alloy steel billet 100mm Q235

Product

Prime quality square alloy steel billet 100mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 100mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q: What are the main factors that determine the demand for steel billets in different industries?
The demand for steel billets in different industries is influenced by several factors. 1. Economic conditions: The overall state of the economy plays a crucial role in determining the demand for steel billets. During periods of economic growth and increased construction activities, there is typically a higher demand for steel billets in industries such as construction, infrastructure, and manufacturing. 2. Construction and infrastructure projects: The demand for steel billets is closely tied to construction and infrastructure projects. These projects require substantial amounts of steel for various purposes, including structural support, reinforcement, and fabrication. The level of investment in construction and infrastructure projects directly affects the demand for steel billets. 3. Manufacturing activities: Steel billets are used as raw material in various manufacturing processes, including automotive, aerospace, machinery, and equipment manufacturing. The demand for steel billets in these industries is directly influenced by the level of manufacturing activities and the overall production output. 4. Technological advancements: Technological advancements and innovation can also impact the demand for steel billets. As new technologies emerge and industries evolve, the demand for steel billets may change. For example, the rise of electric vehicles has increased the demand for steel billets in the automotive industry due to the need for lightweight yet strong materials. 5. International trade and globalization: The demand for steel billets can be affected by international trade dynamics and globalization. The expansion of global supply chains and the growth of emerging economies can lead to increased demand for steel billets in different regions. Changes in trade policies or tariffs can also influence the demand for steel billets in certain industries. 6. Environmental regulations: Increasing environmental regulations and sustainability initiatives can impact the demand for steel billets. Industries that are required to reduce their carbon footprint may opt for alternative materials or adopt more efficient manufacturing processes, which could affect the demand for steel billets. 7. Price and availability: The price and availability of steel billets can significantly impact demand. Fluctuations in steel prices, supply chain disruptions, or shortages of raw materials can influence the demand for steel billets in different industries. Additionally, the availability of substitutes or alternative materials can also affect the demand for steel billets. In conclusion, the demand for steel billets in different industries is influenced by economic conditions, construction and infrastructure projects, manufacturing activities, technological advancements, international trade, environmental regulations, and price and availability factors. Understanding these factors is essential for predicting and analyzing the demand for steel billets in various industries.
Q: Are steel billets used in the production of electrical appliances?
Yes, steel billets are commonly used in the production of electrical appliances. Steel is a versatile material that offers several advantages such as strength, durability, and resistance to corrosion. It is widely used in the manufacturing of various components of electrical appliances, including the outer casing, frames, and internal structural supports. Steel billets are an intermediate product in the steel manufacturing process and can be further processed into different shapes and sizes to meet the specific requirements of electrical appliance production.
Q: What are the different types of surface defect detection equipment for steel billets?
There are various types of surface defect detection equipment available for steel billets. These equipment are designed to identify and analyze defects on the surface of steel billets, ensuring that only high-quality products are used in various applications. Some of the different types of surface defect detection equipment for steel billets include: 1. Ultrasonic Testing (UT): UT equipment uses sound waves to detect surface defects in steel billets. It emits high-frequency sound waves that penetrate the material and reflect back when they encounter any surface irregularities. This method helps identify cracks, voids, and other defects on the surface. 2. Eddy Current Testing (ECT): ECT equipment uses electromagnetic induction to detect surface defects in steel billets. It works by passing an alternating current through a coil, generating a magnetic field that interacts with the conductive material of the billet. Any surface defect or irregularity will cause a change in the magnetic field, which can be measured and analyzed. 3. Magnetic Particle Inspection (MPI): MPI equipment uses magnetic fields and iron particles to detect surface defects in steel billets. The billet is magnetized, and iron particles are applied to its surface. These particles will gather around any surface defect, creating visible indications that can be easily identified and evaluated. 4. Visual Inspection: Visual inspection equipment involves the use of cameras, lasers, and other optical devices to detect surface defects in steel billets. These devices capture images or videos of the billet's surface and allow inspectors to identify any irregularities or defects visually. 5. Thermographic Testing: Thermographic equipment uses infrared cameras to detect surface defects in steel billets by measuring the temperature variations. Any defect will cause a difference in heat transfer, resulting in distinct thermal patterns that can be detected and analyzed. 6. X-ray Inspection: X-ray inspection equipment uses X-ray radiation to penetrate the steel billet and detect internal and surface defects. It provides detailed images that allow inspectors to identify cracks, voids, and other defects that are not visible to the naked eye. Overall, these different types of surface defect detection equipment for steel billets offer a range of methods to ensure the quality and integrity of the billets, enabling manufacturers to deliver high-quality steel products to various industries.
Q: What are the main challenges in the quality control of steel billets?
The main challenges in the quality control of steel billets include several factors that can affect the final product's quality and performance. Here are some of the key challenges: 1. Chemical Composition: Ensuring the accurate chemical composition of steel billets is crucial as it determines the material's strength, durability, and other mechanical properties. Maintaining consistent chemical composition is challenging due to variations in raw materials, melting processes, and the presence of impurities. 2. Homogeneity: Achieving uniformity in the microstructure and composition throughout the steel billet is essential. Inadequate mixing or non-uniform cooling can lead to inconsistencies, resulting in weak spots and uneven mechanical properties. 3. Defect Detection: Identifying and eliminating defects in steel billets is essential to prevent failures during subsequent processing and usage. Common defects include cracks, inclusions, segregation, porosity, and surface irregularities. Detecting these defects accurately and in a timely manner can be challenging due to the size, complexity, and location of certain defects. 4. Dimensional Accuracy: Consistency in the dimensions and shape of steel billets is crucial for their further processing and use in various applications. Maintaining precise dimensions requires controlling variables such as casting speed, cooling rates, and mold design. 5. Surface Quality: The surface condition of steel billets is critical for subsequent operations like rolling, forging, or machining. Ensuring a smooth, clean, and defect-free surface is challenging due to factors such as scale formation, oxidation, decarburization, and surface contamination during handling and storage. 6. Heat Treatment: Proper heat treatment is often necessary to achieve the desired mechanical properties in steel billets. However, controlling the heating and cooling rates, as well as the soaking times, can be challenging due to variations in equipment, temperature monitoring, and quenching techniques. 7. Traceability: Maintaining traceability and documentation throughout the production process is crucial for quality control. Tracking the origin of raw materials, process parameters, testing records, and certifications can be challenging, especially in complex supply chains. Addressing these challenges in the quality control of steel billets requires a combination of advanced testing techniques, robust process controls, skilled personnel, and continuous improvement initiatives.
Q: What are the different joining methods used for steel billets?
There are several different joining methods used for steel billets, depending on the specific application and desired outcome. Some of the most common joining methods include welding, brazing, and adhesive bonding. Welding is a widely used joining method for steel billets. It involves melting the edges of the billets and fusing them together, either with or without the use of a filler material. Welding can be done through various processes such as arc welding, resistance welding, or gas welding. It offers strong and durable joints, but the process can be complex and may require skilled operators. Brazing is another joining method used for steel billets. It involves heating the billets and melting a filler metal with a lower melting point, which is then allowed to flow between the joint surfaces and solidify. Brazing offers good strength and is often used for joining billets that are not easily weldable due to their composition or thickness. Adhesive bonding is a non-mechanical joining method that uses adhesives to bond the steel billets together. Adhesive bonding offers several advantages, including lightweight joints, uniform distribution of stress, and the ability to join dissimilar materials. It is also a versatile method that can accommodate various shapes and sizes of billets. However, adhesive bonding may not provide the same level of strength as welding or brazing, and it can be sensitive to environmental factors such as temperature and humidity. Other joining methods used for steel billets include mechanical fastening, such as bolting or riveting, and thermal joining methods like diffusion bonding or friction welding. Each joining method has its own advantages and limitations, and the choice of method depends on factors such as the specific application requirements, material properties, and cost considerations.
Q: What are the main surface finishes available for steel billets?
The main surface finishes available for steel billets include mill finish, pickled and oiled (P&O), galvanized, painted, and coated finishes. Mill finish refers to the surface of the steel billet as it comes from the rolling mill, which is typically characterized by a rough and unfinished appearance. This finish is suitable for applications where aesthetics are not a priority, such as when the billets will be further processed or coated. Pickled and oiled (P&O) finish involves treating the steel billets with an acid solution to remove any mill scale or impurities, followed by applying a thin layer of oil to protect the surface from oxidation. This finish provides a clean and smooth surface, making it suitable for applications where a high-quality appearance is desired. Galvanized finish involves immersing the steel billets in a zinc bath to create a protective layer of zinc coating over the surface. This finish provides excellent corrosion resistance, making it ideal for outdoor applications or environments with high moisture or chemical exposure. Painted finish involves applying a layer of paint onto the surface of the steel billets. This finish offers both aesthetic appeal and protection against corrosion, as the paint acts as a barrier between the steel and the external environment. Painted finishes can be customized in terms of color and texture to suit specific requirements. Coated finishes involve applying a specialized coating onto the surface of the steel billets. These coatings can include epoxy, polyurethane, or other protective materials that provide enhanced corrosion resistance, chemical resistance, or heat resistance. Coated finishes are often used in industries such as automotive, construction, or oil and gas, where the billets are subjected to harsh conditions. Overall, the choice of surface finish for steel billets depends on the specific application requirements, including aesthetics, corrosion resistance, durability, and environmental factors.
Q: How are steel billets used in the production of building facades?
Due to their versatility and strength, steel billets are a vital component in the manufacturing of building facades. Building facades, which serve as both an aesthetic feature and a protective barrier against external elements, rely on steel billets for various purposes. To begin with, steel billets, which are semi-finished steel products, are commonly used as the primary material for the structural framework of facades. Their high strength-to-weight ratio makes them an ideal choice for supporting the weight of the facade and ensuring structural stability for the building. Furthermore, steel billets can be further processed to create different shapes and profiles required for facade design. Through processes like hot rolling, cold rolling, or extrusion, architects and designers can shape steel billets into intricate and customized designs. This flexibility allows for the creation of unique and aesthetically pleasing facades that enhance the overall appearance of the building. Steel billets also find application in the production of curtain wall systems, which are commonly used in modern building facades. Acting as non-structural cladding systems, curtain walls are attached to the building's structural framework. Steel billets are frequently utilized in the creation of curtain wall support systems, providing the necessary strength and durability to withstand external pressures such as wind loads and seismic forces. Additionally, steel billets can be coated or treated with various finishes to enhance their corrosion resistance and increase their longevity. From galvanization to powder coating, these finishes ensure that the building facade remains durable and visually appealing over time. In conclusion, steel billets play a critical role in the manufacturing of building facades, offering strength, design flexibility, and durability. Their utilization in the structural framework, creation of customized shapes, support systems for curtain walls, and application of protective finishes make them an indispensable material in the construction industry.
Q: What are the different types of cutting methods used for steel billets?
There are several different types of cutting methods used for steel billets, including sawing, shearing, flame cutting, and water jet cutting.
Q: Are steel billets subject to any regulations or certifications?
Yes, steel billets are subject to various regulations and certifications. The regulations and certifications ensure that the production, quality, and safety standards of steel billets are met. One of the most common certifications for steel billets is the ISO 9001 certification, which is an international standard that sets out the criteria for a quality management system. This certification ensures that the manufacturing process of steel billets follows consistent quality control measures, from raw material sourcing to final production. Additionally, steel billets can also be subject to specific industry certifications, depending on their intended use. For example, if the steel billets are intended for use in construction projects, they may need to comply with certifications such as ASTM (American Society for Testing and Materials) standards or the European EN (European Norm) standards. These certifications define the required mechanical properties, chemical composition, and other specifications that steel billets must meet to ensure their suitability for construction purposes. Furthermore, steel billets may also be subject to regulations imposed by governmental bodies or industry associations. These regulations can include safety standards, environmental regulations, and compliance with trade policies. For instance, steel billet producers may need to comply with regulations regarding emissions, waste management, or occupational health and safety. In summary, steel billets are subject to various regulations and certifications to ensure their quality, safety, and compliance with industry standards. These certifications and regulations play a vital role in maintaining the integrity of steel billets and ensuring their suitability for various applications.
Q: What are the quality standards for steel billets?
The quality standards for steel billets typically include criteria such as chemical composition, dimensional accuracy, surface finish, mechanical properties, and internal soundness. These standards ensure that the steel billets meet the required specifications for various applications and guarantee their strength, durability, and suitability for further processing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords