• Prime quality prepainted galvanized steel 615mm System 1
  • Prime quality prepainted galvanized steel 615mm System 2
  • Prime quality prepainted galvanized steel 615mm System 3
  • Prime quality prepainted galvanized steel 615mm System 4
  • Prime quality prepainted galvanized steel 615mm System 5
  • Prime quality prepainted galvanized steel 615mm System 6
Prime quality prepainted galvanized steel 615mm

Prime quality prepainted galvanized steel 615mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 615mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.


Q: Can steel billets be used for making cutlery?
Yes, steel billets can be used for making cutlery. Steel billets are the raw material used in the production of various steel products, including cutlery. The billets are heated and then shaped into desired forms, such as knives, forks, or spoons, through processes like forging or casting. The resulting steel cutlery is known for its strength, durability, and ability to hold a sharp edge. However, it is important to note that the specific type of steel used and the manufacturing processes play a significant role in determining the quality and characteristics of the cutlery.
Q: Can steel billets be used in the production of kitchenware?
Kitchenware can indeed be made using steel billets. Steel billets, which are essentially unfinished steel products that have been cast into a rectangular shape, can undergo further processing through methods such as forging, rolling, or extrusion. These processes allow for the creation of a wide range of kitchenware items, including pots, pans, utensils, and cutlery. The use of steel in kitchenware production is popular due to its exceptional strength, durability, and resistance to heat. It is also well-known for its ability to resist corrosion, making it safe for contact with food and liquids. Furthermore, steel is easy to clean and maintain, making it a hygienic choice for kitchenware. The typical manufacturing process involves heating and shaping the steel billets into the desired form, followed by finishing processes like polishing or coating to improve both the aesthetics and functionality of the kitchenware. With the versatility to produce kitchenware in various shapes, sizes, and designs, steel billets provide a flexible solution for creating high-quality and long-lasting kitchenware items.
Q: How are steel billets used in the production of construction equipment?
Steel billets are an integral component in the production of construction equipment. These billets, which are essentially semi-finished steel forms, serve as the raw material for various construction equipment components. They are typically manufactured through a process called continuous casting, where molten steel is solidified in molds to form solid rectangular or square billets. Once steel billets are obtained, they undergo further processing to transform them into the desired construction equipment parts. This involves shaping, cutting, and machining the billets to create components such as gears, shafts, axles, and structural frames. The versatility of steel allows for customization of these components to meet the specific requirements of different construction equipment. The use of steel billets in construction equipment production offers several advantages. Firstly, steel is known for its exceptional strength and durability, making it ideal for heavy-duty applications. By using steel billets, construction equipment manufacturers can ensure that their products can withstand the demanding conditions of construction sites and provide long-lasting performance. Additionally, steel billets can be easily welded, allowing for the assembly of complex structures and components. This welding capability is crucial in the production of construction equipment, where multiple parts need to be securely joined together to form a robust and reliable machine. Furthermore, steel billets offer excellent machinability, meaning they can be easily shaped and formed into the desired dimensions. This allows for precise manufacturing of intricate components, enhancing the overall performance and functionality of the construction equipment. Lastly, steel billets are readily available in a wide range of grades and compositions, enabling manufacturers to select the most suitable steel alloy for their specific construction equipment applications. This flexibility allows for the optimization of the equipment's performance, weight, and cost-effectiveness. In conclusion, steel billets play a vital role in the production of construction equipment by serving as the raw material for various components. Their strength, durability, weldability, machinability, and wide range of available alloys make them an ideal choice for manufacturing construction equipment that can withstand the demanding conditions of construction sites and deliver long-lasting performance.
Q: What are the different surface treatments for improved fatigue resistance in steel billets?
To enhance the fatigue resistance of steel billets, several surface treatments can be utilized. These treatments aim to improve the steel's fatigue strength by reducing crack formation and propagation, increasing resistance to cyclic loading conditions. Some common surface treatments include: 1. Shot peening: This technique involves bombarding the steel billets with small metallic or ceramic particles at high velocities. By inducing compressive residual stresses on the surface, crack initiation and propagation are prevented, thus improving fatigue resistance. 2. Nitriding: Through this heat treatment process, nitrogen is diffused into the surface layer of the steel billets. This creates a hard nitride layer, increasing hardness, wear resistance, and fatigue strength. 3. Carburizing: Carbon is diffused into the surface layer of the steel billets at high temperatures, increasing carbon content and forming a hardened layer. This enhances fatigue resistance and wear properties. 4. Shot peen forming: Controlled shot peening induces plastic deformation in the steel billets. This treatment improves fatigue resistance, as well as shape and dimensional stability. 5. Surface coatings: Protective coatings can be applied to the surface of steel billets to enhance fatigue resistance. Techniques such as electroplating, thermal spraying, and chemical vapor deposition can deposit wear-resistant and fatigue-enhancing coatings. It is important to consider specific application requirements, steel type, and desired fatigue improvement level when choosing a surface treatment. Thorough consideration and testing should be conducted to determine the most suitable technique for a particular application.
Q: How are steel billets used in the manufacturing of medical equipment?
Steel billets are used in the manufacturing of medical equipment as a raw material that can be shaped and machined into various components such as surgical instruments, implants, and medical device casings. The high strength and durability of steel make it suitable for producing equipment that requires precision, reliability, and resistance to corrosion.
Q: What are the different types of steel billet packaging?
The industry commonly utilizes various steel billet packaging options. These include bundles, wooden crates, steel cages, plastic wrapping, and custom packaging. 1. Bundles: Among the most prevalent packaging methods for steel billets are bundles. This approach involves tightly binding multiple billets together using steel straps or wire rods. By doing so, it ensures the billets remain secure and undamaged during transportation or storage. 2. Wooden crates: Another popular choice for steel billet packaging is wooden crates. These crates are constructed from sturdy wooden materials and are designed to offer maximum protection to the billets. They are often reinforced with steel bands or straps to maintain the security of the billets. 3. Steel cages: Steel cages or racks are frequently employed to package steel billets. These cages are made of steel and are capable of holding multiple billets simultaneously. They provide a robust and secure packaging solution while facilitating easy handling and transportation. 4. Plastic wrapping: In certain situations, steel billets may be wrapped in plastic film or shrink wrap to safeguard against moisture and corrosion. This method is commonly utilized when the billets are stored or transported in controlled environments. 5. Custom packaging: Depending on specific requirements, steel billets can be packaged in customized containers or packaging solutions. These may include specialized crates, boxes, or containers tailored to fit the billets' dimensions and weight, ensuring optimal protection during transportation and storage. In conclusion, the selection of steel billet packaging is dependent on factors such as billet size and weight, transportation method, and desired level of protection. Each packaging option offers unique advantages and is chosen based on the industry's and customer's specific needs.
Q: What are the potential defects or flaws in steel billets?
Steel billets may experience various defects or flaws that can impact the final product's quality and performance. Some of these defects include the following: 1. Surface imperfections: During manufacturing, steel billets may develop surface cracks, scales, or scratches. These imperfections can weaken the material and compromise its structural integrity. 2. Internal flaws: Inclusions, such as non-metallic impurities or gas bubbles, may be present within the steel billets. These internal flaws can create localized weaknesses and reduce the overall material strength. 3. Segregation: Uneven distribution of alloying elements or impurities can result in segregation, where different areas of the billet have varying chemical compositions. Segregation can lead to inconsistent mechanical properties and decrease material uniformity. 4. Central segregation: This defect occurs when impurities or alloying elements concentrate in the central region of the billet, resulting in a weaker core. Central segregation can cause structural failures and decrease the overall reliability of the steel billet. 5. Shrinkage cavities: During solidification, the contraction of molten metal can lead to the formation of shrinkage cavities in the steel billet. These cavities can weaken the material and compromise its structural integrity. 6. Surface decarburization: High temperatures or improper heat treatment can cause the surface of the steel billet to lose carbon content, resulting in surface decarburization. This defect can reduce the material's hardness and strength. 7. Laminations: Thin, elongated voids or layers known as laminations can form parallel to the billet's surface. These defects can weaken the material and make it susceptible to cracking or failure under stress. 8. Internal fissures: Improper cooling or handling during manufacturing can lead to internal fissures or cracks. These cracks can jeopardize the structural integrity of the steel billet and potentially lead to catastrophic failure. It is crucial to detect and address these defects early on to ensure the quality and reliability of the steel billets. Several non-destructive testing techniques, such as ultrasonic testing or magnetic particle inspection, can be employed to identify and mitigate these potential flaws.
Q: What are the different types of steel billet forging defects?
During the forging process, various steel billet forging defects may arise, each with its own causes and potential impact on the final forged product's quality and integrity. The common defects encompass the following: 1. Surface cracks, resulting from excessive heating or cooling, improper forging techniques, or the presence of impurities in the steel, manifest as cracks on the billet's surface. 2. Internal voids, caused by incomplete mold filling, inadequate venting, or trapped gases within the steel, form cavities or voids within the billet. 3. Inclusions, consisting of foreign materials or impurities within the billet, like non-metallic particles (e.g., oxides or sulfides) or metallic impurities (e.g., slag), can weaken the steel structure and diminish overall quality. 4. Segregation, which occurs during the cooling process, refers to the uneven distribution of alloying elements within the billet, leading to different mechanical properties in distinct areas of the steel and resulting in inconsistencies in the final product. 5. Dimensional inaccuracies, arising from improper tooling or die design, inadequate heating or cooling processes, or improper handling during forging, refer to deviations from the desired shape or size of the billet. 6. Grain structure abnormalities, influenced by factors such as improper heating or cooling rates, can weaken the steel and reduce its mechanical properties by altering the grain structure. To ensure the quality and reliability of the final forged product, it is crucial to detect and address these defects during the production process. Quality control measures, including non-destructive testing and visual inspections, can aid in identifying and rectifying these defects before delivering the finished product to the customer.
Q: Can steel billets be used for making kitchen utensils?
Kitchen utensils can indeed be made using steel billets, which serve as raw materials that can be molded and crafted into various products. These steel billets must possess certain qualities like resistance to corrosion, durability, and the ability to withstand heat if they are to be used for kitchen utensils. The process of creating these utensils involves melting and casting the steel billets, which are then forged into the desired shapes and sizes. This allows for the production of knives, spoons, forks, cookware, and other utensils. To improve performance and appearance, the steel used in kitchen utensils is often treated and finished. Ultimately, steel billets play a crucial role in the manufacturing process of kitchen utensils by providing the necessary raw material needed to create durable and functional tools for cooking and food preparation.
Q: What is the melting point of steel billets?
The melting point of steel billets may vary depending on the type of steel utilized. In general, the melting point of steel falls within the range of 1370 to 1530 degrees Celsius (2500 to 2800 degrees Fahrenheit). However, it is worth noting that diverse grades and compositions of steel can possess slightly different melting points. Moreover, factors such as impurities, alloying elements, and the inclusion of other metals in the steel can also influence the melting point. Consequently, it is always advisable to refer to the specific material specifications or seek guidance from metallurgical experts to obtain precise information regarding the melting point of steel billets.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords