• Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace System 1
  • Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace System 2
Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

 

1.Structure of  Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

 

Continue Casting Steel Billet Manufactured By Blasting Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace.

Continue Casting Steel Billet Manufactured By Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3.  Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace Images

 

 

 

Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

 

 

 

4.  Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace Specification

 Continue Casting Steel Billet Manufactured By Blasting Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Billet/Bloom Manufactured by Continue Casting Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?

Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption

Q:What is the role of steel billets in the construction of bridges and tunnels?
Steel billets play a crucial role in the construction of bridges and tunnels as they serve as the raw material for manufacturing various structural elements. These billets are heated and shaped into beams, girders, and columns that provide the necessary strength and support required for these infrastructure projects. By using steel billets, engineers can ensure the durability, load-bearing capacity, and overall structural integrity of bridges and tunnels, making them safer and more reliable for transportation and other purposes.
Q:How are steel billets used in the production of flanges?
Flanges, which are vital components used to connect pipes, valves, and other equipment in industries such as oil and gas, petrochemicals, and power plants, require steel billets as their essential raw material. To manufacture flanges, steel billets are initially heated to a high temperature, making them malleable and easy to shape. Then, they go through a series of rolling mills where hot rolling or forging processes take place. These processes help shape the steel billets into the desired dimensions of the flanges, including outer diameter, inner diameter, and thickness. During the rolling or forging process, immense pressure is applied to the steel billets, aligning the steel grains and enhancing the structural integrity of the flanges. This ensures that the flanges can endure high pressures, temperature fluctuations, and other challenging operating conditions throughout their service life. Once the initial shaping is accomplished, additional processing is carried out to refine the surface finish of the flanges. This may involve machining, grinding, or polishing, depending on the specific design requirements of the flanges. These additional steps are essential to achieve a smooth and precise surface, ensuring proper sealing and connection when the flanges are installed in a piping system. After the surface finish is refined, the flanges undergo various quality control checks, including dimensional inspections, mechanical testing, and non-destructive testing. These tests guarantee that the flanges meet industry standards and specifications, assuring their reliability and performance. In conclusion, steel billets play a vital role in the production of flanges as they provide the necessary raw material for shaping and forming these essential components. The combination of high-temperature processing, rolling or forging, and subsequent finishing processes results in the creation of strong, durable flanges capable of withstanding demanding conditions in industrial applications.
Q:What are the different surface treatments for improved surface hardness in steel billets?
There are several different surface treatments that can be used to improve the surface hardness of steel billets. These treatments are designed to enhance the wear resistance and durability of the steel, making it suitable for various industrial applications. One common surface treatment method is through carburizing. Carburizing involves introducing carbon into the surface of the steel billet by heating it in a carbon-rich atmosphere, such as methane or propane. This process forms a hard layer of high-carbon steel on the surface, known as a case, which significantly increases the surface hardness of the billet. Another surface treatment technique is nitriding. Nitriding is a process that involves exposing the steel billet to a nitrogen-rich atmosphere at elevated temperatures. This causes nitrogen atoms to diffuse into the surface of the steel, forming a hard nitride layer. Nitriding not only improves surface hardness but also enhances the resistance to wear and corrosion. A third surface treatment method is induction hardening. Induction hardening utilizes the principle of electromagnetic induction to heat the surface of the steel billet rapidly. Once the desired temperature is reached, the billet is quenched, resulting in a hardened surface layer. This treatment is particularly effective for localized hardening of specific areas on the steel billet. Additionally, shot peening is another surface treatment technique used to improve surface hardness. Shot peening involves bombarding the surface of the steel billet with small, high-velocity steel shots. This process induces compressive stresses in the surface layer, thereby increasing the hardness and fatigue resistance of the billet. Each of these surface treatments has its advantages and disadvantages, and the choice of treatment method depends on the specific requirements and intended use of the steel billets. By selecting an appropriate surface treatment, manufacturers can ensure that steel billets possess the necessary hardness and durability for their intended applications.
Q:What are the different types of steel billet defects?
There are various types of steel billet defects, including surface defects like cracks, laps, and scars, as well as internal defects such as segregation, porosity, and inclusions.
Q:How do steel billets contribute to the overall weight reduction of a product?
Steel billets contribute to the overall weight reduction of a product by allowing manufacturers to create lighter and more structurally efficient components. By using steel billets, which are smaller and more compact than traditional steel bars or plates, less material is needed to achieve the same strength and performance. This reduction in weight not only makes the product easier to handle and transport, but also improves its overall energy efficiency.
Q:How do steel billets contribute to the overall recyclability of a product?
Steel billets contribute to the overall recyclability of a product by being a primary raw material in steel production. When a product made of steel reaches the end of its life cycle, it can be recycled and transformed into new steel products using steel billets. This reduces the need for extracting and refining new raw materials, conserves energy, and minimizes waste, making the overall recycling process more efficient and sustainable.
Q:What are the main factors affecting the hardness of steel billets?
The hardness of steel billets is primarily influenced by several factors. Firstly, the carbon content plays a crucial role in determining the hardness of steel. Higher carbon content results in greater hardness, as carbon atoms occupy interstitial spaces within the iron crystal lattice, creating stronger bonds and increasing the material's resistance to deformation. Secondly, the presence of alloying elements has a significant impact on steel hardness. Alloying elements such as chromium, molybdenum, and vanadium form solid solutions with iron, altering its crystal structure and strengthening the material. These elements promote the formation of fine and homogeneous microstructures, leading to higher hardness. The heat treatment process is another crucial factor affecting steel billet hardness. Through processes like quenching and tempering, the steel undergoes controlled heating and rapid cooling, resulting in a transformation of its crystal structure. This process, known as martensitic transformation, increases the hardness of the steel by creating a high concentration of dislocations and reducing the grain size. Additionally, the cooling rate during solidification also affects the hardness of steel billets. Rapid cooling, such as in water quenching, promotes the formation of a fine microstructure and increases hardness. Slower cooling rates, on the other hand, allow for the growth of larger grains, resulting in reduced hardness. Lastly, the presence of impurities and non-metallic inclusions can negatively impact the hardness of steel billets. These impurities can disrupt the crystal lattice, reducing the material's strength and hardness. Therefore, the purity and cleanliness of the steel composition are crucial in achieving higher hardness levels. In conclusion, the hardness of steel billets is influenced by factors such as carbon content, alloying elements, heat treatment processes, cooling rate, and the presence of impurities. Understanding and controlling these factors are essential for achieving the desired hardness properties in steel billets.
Q:How do steel billets compare to other types of raw materials in manufacturing?
Steel billets are widely recognized as one of the most versatile and commonly used raw materials in manufacturing industries. When compared to other types of raw materials, steel billets offer several advantages that make them highly desirable. Firstly, steel billets have exceptional strength and durability. This characteristic makes them suitable for a wide range of applications, including construction, automotive, and machinery manufacturing. Steel billets are known for their high tensile strength, which ensures the structural integrity of the final product. Secondly, steel billets have excellent heat resistance properties. This makes them ideal for applications that involve exposure to extreme temperatures, such as in the aerospace and energy sectors. Steel billets can withstand high temperatures without compromising their mechanical properties, ensuring the longevity and reliability of the manufactured products. Additionally, steel billets are highly malleable and can be easily shaped into various forms through processes like rolling, forging, or extrusion. This versatility allows manufacturers to create complex and intricate parts, components, and structures, meeting the diverse needs of different industries. Moreover, steel billets are readily available in large quantities, making them a cost-effective choice for manufacturing. The abundance of steel billets in the market ensures a stable supply chain and helps manufacturers avoid potential disruptions caused by material shortages. Lastly, steel billets are known for their recyclability, making them an environmentally friendly choice. Steel is one of the most recycled materials globally, and the use of steel billets in manufacturing contributes to reducing the environmental impact of waste disposal and conserving natural resources. In summary, steel billets outshine other types of raw materials in manufacturing due to their exceptional strength, heat resistance, malleability, cost-effectiveness, and recyclability. These qualities make steel billets a preferred choice for a wide range of industries, offering reliability, versatility, and sustainability in the manufacturing process.
Q:How do steel billets contribute to the overall strength of a structure?
The overall strength of a structure is greatly influenced by steel billets, which serve as essential building blocks. These billets, in their semi-finished form, are utilized as raw materials for producing various structural components. The exceptional strength and durability of steel itself are the primary reasons why steel billets enhance the strength of a structure. This makes steel an ideal construction material. When steel billets are incorporated in the manufacturing process, they lay a solid foundation for creating stronger structural elements. Steel billets are typically shaped into different structural components, like beams, columns, and plates, through hot-rolling or forging. This manufacturing process subjects the steel to high temperatures and pressure, leading to a refined grain structure. The refined grain structure significantly improves the strength and toughness of the steel, making it more resistant to deformation and structural failure. Moreover, steel billets can be further processed to achieve specific mechanical properties required for different structural applications. For instance, heat treatment processes like quenching and tempering can enhance their hardness and toughness. Consequently, the steel can endure higher loads and stresses, thereby contributing to the overall strength and stability of the structure. Apart from their inherent strength, steel billets offer advantages in terms of versatility and design flexibility. They can be easily shaped into various sizes and dimensions, enabling engineers to create intricate structural configurations. This versatility allows for the optimization of the structural design, ensuring maximum load-bearing capacity and overall strength of the structure. Furthermore, steel billets possess excellent weldability, allowing them to seamlessly join with other steel components. This ensures the integrity and continuity of the structure, preventing weak points or potential failure zones. By creating a unified and interconnected system, the steel billets contribute to the overall strength and stability of the structure. In conclusion, steel billets significantly contribute to the overall strength of a structure through their inherent strength, refined grain structure, and ability to undergo various heat treatment processes. They provide a strong foundation for manufacturing structural components, enabling them to withstand high loads and stresses. The versatility and design flexibility of steel billets further optimize the structural design, while their excellent weldability ensures the integrity of the structure. As a result, steel billets are essential in constructing resilient and long-lasting structures.
Q:What is the typical composition of steel billets?
The typical composition of steel billets can vary depending on the specific requirements and intended use. However, in general, steel billets are primarily composed of iron and carbon, with other elements added to enhance certain properties. The carbon content in steel billets is typically around 0.1-0.3%. In addition to iron and carbon, steel billets often contain small amounts of other elements such as manganese, silicon, sulfur, and phosphorus. Manganese helps improve the strength and hardness of the steel while also promoting better heat treatment response. Silicon is commonly added to enhance the steel's fluidity during casting. Sulfur and phosphorus are impurities that need to be minimized as they can negatively affect the steel's machinability and mechanical properties. Furthermore, alloying elements such as chromium, nickel, molybdenum, and vanadium may also be present in steel billets to impart specific properties. For instance, chromium improves corrosion resistance, nickel enhances toughness and ductility, molybdenum increases high-temperature strength, and vanadium improves wear resistance. Overall, the composition of steel billets is carefully controlled to achieve the desired mechanical, physical, and chemical properties required for the subsequent processing and final applications of the steel.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords