• Square Steel Billet, Square Bar with High Quality System 1
  • Square Steel Billet, Square Bar with High Quality System 2
  • Square Steel Billet, Square Bar with High Quality System 3
Square Steel Billet, Square Bar with High Quality

Square Steel Billet, Square Bar with High Quality

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25000 m.t.
Supply Capability:
35000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description of Square Steel Billet, Square Bar with High Quality:

square steel billet 
1.3SP, 5SP 
2.terms of payment: L/C at sight 
3.size: 120*120mm 
4.length: 5.8~12m

Specifications of Square Steel Billet, Square Bar with High Quality:
square steel billets 
The following are the sizes of Billets available with Shyam Steel Industries Ltd.:
100 X 100
120x120
150 X 150
Physical Properties:
Description
As per IS 2830
Shyam Billets
Bend (max.) 5 mm per meter >= 5 mm per meter
Carbon (max.) 3mm per meter >= 3 mm per meter
Length 3 mt - 13 mt 3 mt - 9 mt
Chemical Properties:
Ladle Analysis:
Designation
Carbon
Manganese
C15 0.12-0.18 0.30-0.60
C18 0.15-0.21 0.30-0.60
C20 0.17-0.23 0.30-0.60
C15 MMn 0.12-0.18 0.60-1.00
C18 MMn 0.15-0.21 0.60-1.00
C20 MMn 0.17-0.23 0.60-1.00
C15 HMn 0.12-0.18 1.00-1.50
C18 HMn 0.15-0.21 1.00-1.50
C20 HMn
0.17-0.23 1.00-1.50

 

Production of Square Steel Billet, Square Bar with High Quality:

Billets of different designations are manufactured in three different grades namely A, B, C having sulphur, phosphorous content (on ladle analysis) and carbon equivalent as follows:
Chemical Analysis:
Grade Sulphur Phosphorous Carbon Equivalent (CE)1
 Max Max Max
A 0.05 0.05 0.42
B 0.045 0.045 0.41
C 0.04 0.04 0.39

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Images:

 

Square Steel Billet, Square Bar with High Quality

Square Steel Billet, Square Bar with High Quality

 

Q:How are steel billets used in the production of mining equipment?
Steel billets are an essential component in the production of mining equipment due to their strength, durability, and versatility. These billets are typically made from molten steel that is poured into a mold to form a solid rectangular shape. The resulting billets are then used as raw material in the manufacturing process of mining equipment. Mining equipment, such as excavators, bulldozers, and crushers, require robust and reliable components to withstand the harsh conditions and heavy loads experienced in mining operations. Steel billets provide the necessary structural integrity and toughness to ensure the equipment can operate efficiently and safely. Once the steel billets are obtained, they are further processed through various techniques, such as forging, machining, and welding, to transform them into specific parts and components. For example, billets can be hot or cold forged to create heavy-duty gears, shafts, and axles, which are crucial for the functioning of mining equipment. Additionally, steel billets can be machined to precise dimensions and specifications, allowing the production of custom-made components that fit seamlessly into the mining equipment. This machining process involves cutting, drilling, and milling to create parts like buckets, cutting edges, and chassis. Furthermore, steel billets can undergo welding processes to join different parts together and create complex structures. Welding ensures the integrity and strength of the equipment, as it provides a secure bond between the billets and other components. This is particularly important in the construction of mining equipment, where safety and reliability are paramount. Overall, steel billets play a vital role in the production of mining equipment by providing the necessary raw material for the manufacturing process. Their strength, durability, and versatility make them ideal for creating robust and reliable components that can withstand the demanding conditions encountered in mining operations.
Q:What are the different types of defects that can occur in steel billets?
There are several types of defects that can occur in steel billets. These defects can occur during the manufacturing process or as a result of external factors. Some of the common types of defects include: 1. Surface defects: These defects occur on the outer surface of the billet and can include scratches, pits, scabs, scale, and cracks. Surface defects can be caused by handling, improper cooling, or contamination during manufacturing. 2. Internal defects: These defects occur within the body of the billet and are not visible on the surface. They can include voids, porosity, inclusions, and segregation. Internal defects can be caused by improper solidification, improper casting, or impurities in the steel. 3. Dimensional defects: These defects occur when the billet does not meet the desired dimensions or tolerances. Dimensional defects can include variations in length, width, thickness, or straightness. These defects can be caused by improper rolling, uneven cooling, or misalignment of the equipment. 4. Mechanical defects: These defects affect the mechanical properties of the steel billet. They can include improper grain structure, low hardness, brittleness, or poor toughness. Mechanical defects can occur due to improper heat treatment, incorrect alloy composition, or inadequate rolling processes. 5. Weld defects: In case of welded billets, defects related to the welding process can occur. These defects can include lack of fusion, incomplete penetration, porosity, or cracks in the weld zone. Weld defects can be caused by improper welding parameters, inadequate preparation, or contamination during the welding process. It is important to detect and address these defects to ensure the quality and integrity of the steel billets. Various inspection techniques such as visual inspection, ultrasonic testing, magnetic particle testing, or radiographic testing can be employed to identify and classify these defects.
Q:What is the standard size of a steel billet?
The specific requirements and industry standards may cause the standard size of a steel billet to fluctuate. Generally, these steel billets are rectangular and their dimensions usually fall within the range of 100mm x 100mm to 200mm x 200mm. The length of a steel billet also tends to vary, though it commonly measures approximately 6 meters. It is worth mentioning that these dimensions are not set in stone and can be tailored according to the intended usage and manufacturing procedure.
Q:What is the purpose of steel billets?
The purpose of steel billets is to serve as raw material for the production of various steel products. Steel billets are semi-finished products that are typically square or rectangular in shape, and they are produced through the process of casting or hot rolling. These billets are then further processed in various ways, such as forging, rolling, or extrusion, to create finished steel products like bars, rods, wire, pipes, and tubes. Steel billets are crucial in the steel manufacturing industry as they provide a uniform and consistent starting material that can be easily shaped and formed into a wide range of products. They possess desirable properties like strength, durability, and ductility, making them suitable for use in construction, automotive, infrastructure, machinery, and many other applications. The use of steel billets allows manufacturers to efficiently produce steel products with specific dimensions, mechanical properties, and surface finishes. By controlling the composition and processing of the billets, steel manufacturers can tailor the final product to meet the specific requirements of customers, ensuring the desired performance and quality. In summary, the purpose of steel billets is to serve as a starting material for the production of various steel products. They provide the foundation for shaping and forming steel into the desired finished products, enabling industries to meet the diverse needs of modern society.
Q:How do steel billets contribute to the overall fire resistance of a structure?
Steel billets do not directly contribute to the fire resistance of a structure. However, steel is a fire-resistant material and when used in the construction of a building, it can enhance the overall fire resistance by providing structural integrity and stability even at high temperatures.
Q:How are steel billets used in the production of building facades?
Steel billets are used in the production of building facades as they serve as the raw material for manufacturing different components such as beams, columns, and plates. These billets are hot-rolled or forged into specific shapes and sizes, which are then used to create the structural framework of the facade. Additionally, steel billets are also used to create decorative elements and cladding panels that enhance the aesthetic appeal of the building exterior.
Q:How are steel billets used in the manufacturing of shipbuilding parts?
The manufacturing of shipbuilding parts heavily relies on steel billets, which are vital in this process. These billets are essentially semi-finished steel products, usually in the form of rectangular or square bars, and are utilized as raw material for further processing in shipbuilding. To initiate the process, steel billets undergo rolling, where they pass through a series of rollers to decrease their cross-sectional area and increase their length. This rolling process converts the billets into elongated, slender sections of steel known as plates or sheets. These plates or sheets are then employed to fabricate diverse shipbuilding components, including hulls, decks, bulkheads, and superstructures. After the rolling process, the steel plates or sheets are cut into desired sizes and shapes using cutting machines or torches. These cut pieces are subsequently molded, bent, and welded together to form the necessary shipbuilding parts. For example, the steel plates can be bent and welded to create curved sections for the ship's hull, or they can be shaped into intricate forms for other components. Furthermore, steel billets are also utilized in the production of forged shipbuilding parts. In this scenario, the billets are heated to high temperatures and then subjected to intense pressure to reshape the steel. This forging process results in shipbuilding parts that are stronger and more durable, often used for critical components such as propeller shafts, crankshafts, and turbine blades. In conclusion, steel billets serve as the starting point in the manufacturing of shipbuilding parts. Through processes such as rolling, cutting, molding, and forging, these billets are transformed into plates, sheets, and forged components, all of which are crucial in constructing the various structural and functional elements of ships.
Q:What is the role of steel billets in the manufacturing of fasteners?
Fasteners, which are crucial components used to connect objects and provide stability and strength, rely heavily on steel billets in their manufacturing process. Acting as semi-finished products, steel billets serve as the starting point for fastener production. To make the steel billets malleable, the first step in the manufacturing process involves heating them to a specific temperature of approximately 1200-1300 degrees Celsius. This heating process facilitates easier shaping and manipulation during subsequent stages. Once the billets are heated, they undergo shaping by passing through a series of dies. These dies exert significant pressure to mold the billets into the desired form of the fastener. Designed with precise dimensions and shapes for each type of fastener, such as bolts, screws, or nuts, the dies play a key role in the shaping process. The deformation and compression experienced by the steel billets during shaping result in the basic structure and form of the fastener. The pressure applied by the dies ensures that the fasteners possess the necessary strength and durability to withstand the forces they will encounter in their intended applications. Moreover, steel billets are selected for fastener manufacturing due to their inherent properties. Steel exhibits exceptional strength, toughness, and corrosion resistance, making it an ideal material for fasteners. By starting with high-quality steel billets, the resulting fasteners will inherit these desirable attributes, guaranteeing reliability and longevity after installation. In conclusion, the significance of steel billets in fastener production cannot be overstated. Serving as the raw material, they undergo shaping and deformation to ultimately acquire the desired fastener shape. The use of steel billets ensures that the resulting fasteners possess the required strength, durability, and corrosion resistance for their intended applications.
Q:What are the causes of internal cracks in continuous casting billet?
A French Research Institute of carbon, sulfur and phosphorus influence on continuous casting billet hot cracking, a total of three test groups of carbon manganese steel, carbon, sulfur and phosphorus content of each sample is different. The test according to the process of the sample for cooling, in order to study the effects of the three elements of the internal crack of continuous casting billet hot.
Q:What are the different types of steel billet shearing machines?
There are several different types of steel billet shearing machines available in the market, each designed to cater to specific needs and requirements. Some of the most common types include: 1. Hydraulic Billet Shearing Machine: This type of machine utilizes hydraulic power to cut steel billets with precision and efficiency. It offers a high cutting force and can handle larger billet sizes. 2. Mechanical Billet Shearing Machine: These machines use mechanical force, such as a flywheel or a cam-operated mechanism, to cut the steel billets. They are typically compact and suitable for smaller billet sizes. 3. Pneumatic Billet Shearing Machine: This type of machine employs pneumatic pressure to shear the steel billets. It is commonly used in applications where hydraulic or mechanical power may not be available or suitable. 4. CNC Billet Shearing Machine: CNC (Computer Numerical Control) machines offer automated and precise cutting of steel billets. They can be programmed to perform complex cuts and are suitable for high-volume production environments. 5. Rotary Billet Shearing Machine: This machine utilizes a rotary blade to cut the steel billets. It offers a continuous cutting motion and is ideal for cutting larger billet sizes or long-length materials. 6. Cold Billet Shearing Machine: This type of machine is specifically designed for cutting cold billets. It uses a combination of hydraulic or mechanical force and can handle materials that may be more brittle when cold. 7. Hot Billet Shearing Machine: Hot billet shearing machines are designed to cut steel billets at high temperatures. They are equipped with specialized blades and cooling systems to handle the heat generated during the cutting process. These are just a few examples of the different types of steel billet shearing machines available in the market. The choice of machine depends on factors such as the size and thickness of the billets, required precision, production volume, and specific application requirements. It is important to consider these factors and consult with a professional to determine the most suitable machine for your needs.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords