Steel Square Bar Hot Rolled 5MM-28MM High Quality Hot Rolled
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Steel Square Bar Hot Rolled 5MM-28MM High Quality Hot Rolledat great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
1) Suitable for making various strong cutting tool abrasion resistance, impact resistance.
2) Used to produce all kinds of high hard and super hard saw blade, drill, tap, broach, gear hob and various kinds of milling cutter.
3) Used for advanced punching die, screw die, and the toughness and complicated shape of the punch, etc.
4) Is used for cold forging die and drawing mode, etc.
5) Recommended watchcase factory, screw factory and other cold stamping products industry use.
Product Advantages:
OKorder's Steel Square Bar Hot Rolled 5MM-28MM High Quality Hot Rolledare durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Standard: GB,
-Grade: Q195 or equivalent.
-Chemical Composition:
Standard | Grade | Element (%) | ||||
GB | Q195 | C | Mn | S | P | Si |
0.06~0.12 | 0.25~0.50 | ≤0.050 | ≤0.045 | ≤0.30 |
Measures of HR Square Bar (small measures):
(Section of HR Square Bar)
-Length of a side and Theoretical weight of Square Bar.
Length of a side(mm) | Theoretical weight(kg/m) | Length of a side(mm) | Theoretical weight(kg/m) |
7 | 0.385 | 22 | 3.80 |
8 | 0.502 | 24 | 4.52 |
9 | 0.636 | 25 | 4.91 |
10 | 0.785 | 26 | 5.30 |
11 | 0.950 | 28 | 6.15 |
12 | 1.13 | 30 | 7.06 |
13 | 1.33 | 32 | 8.04 |
14 | 1.54 | 34 | 9.07 |
15 | 1.77 | 36 | 10.17 |
16 | 2.01 | 38 | 11.24 |
17 | 2.27 | 40 | 12.56 |
18 | 2.54 | 42 | 13.85 |
19 | 2.82 | 45 | 15.90 |
20 | 3.14 | 48 | 18.09 |
21 | 3.46 | 50 | 19.63 |
Notes:
1, The theoretical weights in the list, base on the density of 7.85 g/cm3.
2, Formula for theoretical weight of Square bar: (length of a side)2 * 0.00785
3, The numbers with *mean that they are not regular or we don’t offer them.
-Regular length of Square Bar:
Steel | Length of a side (mm) | Length of steel (m) |
Normal steel | < 25 | 4~10 |
> 25 | 3~9 | |
Steel of high quality | All measure | 2~6 |
Tool steel >75 | 1~6 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do you package the angle steel when shipping?
A2: All goods are packed in bundles with steel strips and shipped by container or break bulk.
Q3: The products are invoicing on theoritical weight or on actual weight?
A3: We can do it in both manners, according to the customers' request.
- Q: What are the different types of steel billet inspection techniques?
- In the industry, various techniques are utilized for inspecting steel billets to ensure their quality and integrity before further processing or utilization in manufacturing. Some commonly employed inspection techniques comprise: 1. Visual Inspection: Inspectors visually examine the steel billets for surface defects like cracks, pits, or deformities, making it a quick and effective method for detecting obvious visual defects. 2. Dimensional Inspection: This technique involves measuring the dimensions of the steel billet using tools like Vernier calipers or micrometers, ensuring that the billets meet the required dimensional specifications. 3. Ultrasonic Testing: High-frequency sound waves are used in ultrasonic testing to detect internal defects or inconsistencies in the steel billets. This technique can identify defects like cracks, voids, or inclusions that may not be visible to the naked eye. 4. Magnetic Particle Inspection: By applying magnetic fields to the steel billets and utilizing iron particles or magnetic ink, this technique identifies surface and near-surface defects, particularly cracks or discontinuities. 5. Eddy Current Testing: Eddy current testing utilizes electromagnetic induction to detect surface defects and measure the conductivity or thickness of the steel billets. It is a non-destructive technique that can identify defects like cracks, corrosion, or variations in material thickness. 6. Radiographic Testing: X-rays or gamma rays are employed in this technique to inspect the internal structure of the steel billets, enabling the detection of defects like inclusions, voids, or improper internal structure. 7. Dye Penetrant Inspection: By applying a dye or fluorescent liquid to the steel billets, dye penetrant inspection detects surface defects. The dye seeps into cracks or discontinuities, and excess dye is wiped off, leaving only the dye trapped in the defects, which can be easily identified under UV light. These techniques are commonly used for inspecting steel billets, with each having its own advantages and limitations. The choice of technique depends on factors such as the type and size of the billets, the level of defect detection required, and budget constraints.
- Q: What are the different methods of steel billet surface inspection?
- There are several methods of steel billet surface inspection, including visual inspection, magnetic particle inspection, ultrasonic testing, and eddy current testing. Visual inspection involves examining the surface for any visible defects or irregularities. Magnetic particle inspection uses magnetic fields and iron particles to detect surface cracks or discontinuities. Ultrasonic testing uses high-frequency sound waves to detect internal defects or anomalies in the billet's surface. Eddy current testing involves passing an electrical current through the billet and detecting changes in the current caused by surface defects. These methods help ensure the quality and integrity of steel billets before further processing or use.
- Q: Can steel billets be forged?
- Yes, steel billets can be forged.
- Q: How are steel billets used in the production of electrical appliances?
- The production of electrical appliances utilizes steel billets in multiple ways. Firstly, these billets serve as the primary material for manufacturing various electrical appliance components. Depending on the appliance's specific requirements, the billets can be formed and shaped into sheets, plates, bars, or wires. For instance, thin sheets rolled from steel billets are utilized in constructing the outer casing or body of appliances like refrigerators, washing machines, or air conditioners. These sheets offer durability, strength, and protection to the internal components of the appliance. Moreover, steel billets can undergo further processing to create bars or wires essential for electrical connections, circuit breakers, or switches. These components demand high electrical conductivity, heat resistance, and mechanical strength, all of which steel billets can provide. Furthermore, steel billets are crucial in the manufacturing of motors and transformers, integral to the operation of electrical appliances. These billets are shaped and machined to produce specific parts such as rotor cores, stator cores, or laminated cores, necessary for the efficient conversion of electrical energy. In conclusion, steel billets are of utmost importance in the production of electrical appliances as they serve as the essential raw material for creating casings, bars, wires, and cores. The properties of strength, durability, electrical conductivity, and heat resistance make them an ideal choice for ensuring the reliability and functionality of electrical appliances.
- Q: How are steel billets used in the production of tooling?
- Tooling production relies heavily on the use of steel billets, which are indispensable for creating tools and machinery components. These semi-finished steel products play a vital role in the process due to their exceptional properties. To begin with, the steel billets undergo a transformation process called forging, where they are heated and subjected to pressure to achieve the desired shape and size. This forging process forms the basis for manufacturing a wide range of tooling components, including dies, molds, punches, and cutting tools. The strength and durability of steel billets make them highly suitable for tooling applications. Steel is renowned for its high tensile strength, which allows tools to withstand heavy loads and resist deformation during operation. Additionally, steel billets can be heat-treated to enhance their hardness, toughness, and wear resistance, thereby improving the performance and longevity of the tools. Moreover, steel billets possess excellent machinability, enabling them to be easily cut, drilled, or shaped into intricate designs. This versatility empowers tooling manufacturers to create complex and customized components that meet specific industry requirements. Once the steel billets have been forged and machined into the desired shape, they undergo additional processes such as grinding, polishing, and coating to attain the final tooling product. These finishing processes ensure that the tool's surface is smooth, free from flaws, and resistant to corrosion. In conclusion, steel billets are essential in tooling production due to their strength, durability, and machinability. They serve as the starting point for manufacturing various tooling components used in industries ranging from automotive manufacturing to aerospace. The versatility and reliability of steel billets make them a vital material in ensuring the quality and performance of tools used across diverse applications.
- Q: How are steel billets used in the manufacturing of tools?
- The production of tools relies on the use of steel billets, which serve as the starting material. Steel billets are semi-finished products that have a square or rectangular shape and are made of solid steel. They are created through a process called steelmaking, which involves melting iron ore to produce steel. To manufacture tools, the steel billets undergo a preliminary step of heating to a specific temperature known as the forging temperature. At this temperature, the steel becomes flexible and can be easily shaped. The billets are then shaped using various forging techniques, including hammering, pressing, or rolling, until they take on the desired form of the tool. Once the billets have been forged into the desired shape, they undergo further processing through machining operations. These operations, such as milling, drilling, grinding, or turning, are used to achieve the required dimensions and surface finish. Excess material is removed during this stage, and the tool's shape and features are refined. After the machining process, the tools undergo heat treatment to enhance their mechanical properties. This involves subjecting the tools to specific heating and cooling cycles, which alter their hardness, toughness, and resistance to wear. This step is crucial in ensuring that the tools can withstand the demanding conditions they will encounter during use. Finally, the tools are given a finishing touch and coating to provide protection against corrosion and improve their appearance. This can involve processes such as sandblasting, polishing, and the application of protective coatings like chrome plating or powder coating. In conclusion, steel billets play a vital role in the manufacturing of tools, serving as the raw material that undergoes forging, machining, heat treatment, and finishing. The properties of the steel billets, such as their composition and metallurgical characteristics, contribute significantly to the final quality, strength, and durability of the tools produced.
- Q: How are steel billets used in the manufacturing of rail tracks?
- The manufacturing of rail tracks relies heavily on steel billets, which serve as a vital component. These billets, semi-finished steel pieces, are widely used as the initial material in various metalworking procedures. In the case of rail track production, the steel billets are subjected to high temperatures and subsequently passed through a sequence of rolling mills. During the rolling procedure, the steel billets gradually take shape and elongate, forming rail blooms that are characterized by their long and narrow sections. These rail blooms then undergo further processing and shaping through hot rolling, which involves passing them through multiple sets of rollers to achieve the desired dimensions and shape of the rail track. This process contributes to enhancing the mechanical properties of the steel, such as its strength and durability. Once the rail blooms have been shaped, they go through controlled cooling, a process in which they are cooled at a specific rate to optimize their microstructure and properties. This controlled cooling aids in reducing internal stresses and improving the overall quality of the rail tracks. Following the controlled cooling process, the rail blooms are subjected to straightening, cutting, and ultimately, finishing operations. These operations ensure that the rail tracks are straight, possess precise dimensions, and conform to the required standards and specifications. In conclusion, steel billets play a critical role in the manufacture of rail tracks. They are transformed into rail blooms through a series of rolling processes, and subsequently undergo further processing to produce high-quality rail tracks that are strong, durable, and capable of withstanding the heavy loads and constant use associated with railway transportation systems.
- Q: What are the potential applications of steel billets in the electronics industry?
- Steel billets have several potential applications in the electronics industry. Although steel is not traditionally associated with the electronics sector, advancements in technology have allowed for its use in various applications. One potential application of steel billets in the electronics industry is in the production of electronic enclosures. Steel enclosures offer superior durability and protection for electronic components. They can withstand harsh environments, provide electromagnetic shielding, and prevent damage from impacts or accidents. Steel billets can be shaped and formed into different enclosure designs, providing flexibility for manufacturers to meet specific requirements. Another potential application is in the manufacturing of connectors and terminals. Steel billets can be machined and formed into intricate shapes and sizes, making them suitable for creating reliable and strong connectors. Steel connectors offer excellent conductivity, ensuring efficient and secure connections between different electronic components. Moreover, steel's resistance to corrosion makes it a viable option for connectors exposed to moisture or other harsh conditions. Steel billets can also be used in the production of high-strength structural components in electronic devices. These components, such as brackets, frames, or supports, require materials with exceptional strength and rigidity. Steel billets, with their high strength-to-weight ratio, can provide the necessary structural integrity and stability. Their robustness ensures the longevity and reliability of electronic devices, especially those subjected to heavy loads or vibrations. Additionally, steel billets can find applications in the manufacturing of heat sinks. Heat sinks are crucial for dissipating heat generated by electronic components and preventing overheating. Steel, with its excellent thermal conductivity, can efficiently transfer heat away from sensitive electronic parts. By shaping steel billets into heat sink designs, manufacturers can create effective cooling systems that enhance the performance and longevity of electronic devices. In conclusion, steel billets have various potential applications in the electronics industry. From electronic enclosures to connectors, structural components, and heat sinks, steel's durability, conductivity, and thermal properties make it a valuable material in the production of electronic devices. As technology continues to advance, the use of steel billets in the electronics industry is likely to expand further, offering even more innovative solutions for electronic manufacturers.
- Q: How are steel billets used in the manufacturing of energy sector components?
- Steel billets are an essential component in the manufacturing of various energy sector components. These billets are typically produced through a process called continuous casting, where liquid steel is poured into a mold to solidify into a long, rectangular shape. In the energy sector, steel billets serve as a primary raw material for the production of a wide range of components. One of the most common uses of steel billets is in the manufacturing of pipelines. These billets are first heated and then rolled or forged to form seamless or welded pipes, which are used to transport oil, gas, and other fluids across long distances. The high strength and durability of steel make it an ideal material for pipelines, ensuring the safe and efficient transport of energy resources. Additionally, steel billets are also used in the production of power generation equipment. They are shaped and machined into various components such as turbine blades, shafts, and rotors, which are crucial for the operation of power plants. Steel's excellent mechanical properties, including its high tensile strength and resistance to corrosion, make it suitable for withstanding the harsh conditions and high temperatures experienced in power generation processes. Furthermore, steel billets are utilized in the manufacturing of renewable energy infrastructure, such as wind turbine towers. These billets are transformed into large cylindrical sections that form the structural support for wind turbines. The strength and stability of steel ensure that wind turbines can withstand the forces exerted by wind and generate electricity efficiently. In summary, steel billets play a vital role in the energy sector by serving as a raw material for the production of pipelines, power generation equipment, and renewable energy infrastructure. Their strength, durability, and resistance to corrosion make them ideal for withstanding the demanding conditions and ensuring the reliability of energy sector components.
- Q: What are the common defects in billet? What's the cause?
- Five, X ray inspection, porosity, ultrasonic testing:One, 5, magnetic particle inspection, the back of the dent; 6, overheating and over burning: 1, penetrant inspection;Four. 2. The size of the weld does not meet the requirements and slag inclusion; 3 high-energy X-ray inspection, lamellar tearing and R ray flaw detection; 2;Five;Two: 1, arc crater;Methods for inspection of weld defects;
Send your message to us
Steel Square Bar Hot Rolled 5MM-28MM High Quality Hot Rolled
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords