• Steel Billet Manufactured by Blast Furnace without Boron System 1
  • Steel Billet Manufactured by Blast Furnace without Boron System 2
Steel Billet Manufactured by Blast Furnace without Boron

Steel Billet Manufactured by Blast Furnace without Boron

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Steel Billet Manufactured by Blast Furnace without Boron

 

1.Structure of  Steel Billet Manufactured by Blast Furnace without Boron

Steel Billet Manufactured by Blast Furnace without Boron is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Steel Billet Manufactured by Blast Furnace without Boron.

Steel Billet Manufactured by Blast Furnace without Boron section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Steel Billet Manufactured by Blast Furnace without Boron Images

 

 

 

Steel Billet Manufactured by Blast Furnace without Boron

Steel Billet Manufactured by Blast Furnace without Boron

 

 

 

 

4.  Steel Billet Manufactured by Blast Furnace without Boron Specification

Steel Billet Manufactured by Blast Furnace without Boron rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

 

The classification of the Bloom Mainly from the shape is divided into two kinds: Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. Bloom: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod.

Bloom material standard The thickness range: 150-240 - mm + / - 5 mm The width of the range: 880-1530 - mm + / - 20 mm Length range: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64 ; 82 * 82 ; 98 * 98 ; 124 * 124 ; 120 * 150 ; 152 * 164 ; 152 * 170 mm Length: 9000 mm The section of tolerance: Bloom: 1.0 + / - 2.0-1.0 + / - 1.0 mm The slab width: + / - 2.0 MM ; Thickness: + / - 3.0 MM

 

 

 

5.FAQ of  Steel Billet Manufactured by Blast Furnace without Boron

 

We have organized several common questions for our clients,may help you sincerely: 

 

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How is the packaging and delivery?

Exporting Package with the steel material cover and the delivery term is based on the project.

 

Q: What are the different quality control measures for steel billets?
There are several quality control measures that are implemented during the production and inspection of steel billets to ensure their high quality. These measures include: 1. Chemical Composition Analysis: The chemical composition of steel billets is thoroughly analyzed to ensure it meets the required specifications. This analysis involves determining the content of various elements such as carbon, manganese, sulfur, phosphorus, and others. Any deviations from the specified composition can affect the mechanical properties of the billets. 2. Dimensional Inspection: Steel billets undergo dimensional inspection to verify their size, shape, and weight. This involves measuring the length, width, and thickness of the billets using precision instruments and ensuring they meet the specified tolerances. Any deviations from the required dimensions can impact the performance of the billets during subsequent processing. 3. Surface Inspection: The surface of steel billets is inspected for any defects or irregularities. This includes checking for cracks, surface discontinuities, surface roughness, and other imperfections. Surface inspection is typically conducted using visual inspection techniques or non-destructive testing methods such as magnetic particle testing or ultrasonic testing. 4. Mechanical Testing: Mechanical testing is performed to assess the mechanical properties of steel billets. This includes conducting tests such as tensile testing, hardness testing, and impact testing to determine the strength, ductility, toughness, and other mechanical characteristics of the billets. These tests ensure that the billets possess the required mechanical properties for their intended applications. 5. Metallurgical Examination: Metallurgical examination involves studying the microstructure of steel billets through microscopic analysis. This examination helps identify any defects in the metal structure, such as grain size, segregation, inclusions, or improper heat treatment. By assessing the metallurgical properties, the quality control team can ensure that the billets are free from any internal defects that might compromise their structural integrity. 6. Non-Destructive Testing (NDT): Non-destructive testing techniques, such as ultrasonic testing, magnetic particle testing, or eddy current testing, are used to detect internal defects or discontinuities that may not be visible through visual inspection. These methods allow for the detection of flaws without damaging the billets, ensuring their integrity is maintained. 7. Documentation and Traceability: Quality control measures also include maintaining proper documentation and traceability throughout the production process. This includes documenting the results of all inspections, tests, and analyses performed on the steel billets, as well as tracking their origin, processing history, and any relevant certifications. This documentation ensures transparency and enables traceability in case of any quality-related issues. By implementing these quality control measures, steel manufacturers can ensure that the produced billets meet the required specifications, possess the desired properties, and are of high quality, thereby enhancing their reliability and suitability for various applications in industries such as construction, automotive, and manufacturing.
Q: How are steel billets inspected for surface defects?
To ensure the quality and integrity of steel billets, a variety of methods and techniques are employed to inspect them for surface defects. One way is through visual inspection, where trained inspectors carefully scrutinize the billets for any visible flaws such as cracks, scratches, pits, or unevenness. They utilize appropriate lighting and magnification tools to conduct a thorough examination of the entire surface. Another method in use is dye penetrant testing. This involves applying a liquid dye to the billet's surface, allowing it to seep into any cracks or defects. After a designated period, excess dye is removed and a developer is added. The developer brings out the dye from any defects, making them clearly visible and easily identifiable. Magnetic particle inspection is another widely utilized technique. During this process, the billets are magnetized, and iron particles are applied to the surface. Any surface flaws disrupt the magnetic field, causing the iron particles to gather around the defect, thus making them easily detectable upon inspection. This method proves particularly effective for identifying defects such as surface cracks. Ultrasonic testing is also commonly employed to inspect steel billets. It entails transmitting high-frequency sound waves through the material, which then produce reflections or echoes when encountering any surface defects or internal flaws. These reflections are detected and analyzed, providing valuable information about the defect's size, location, and type. Furthermore, eddy current testing can be utilized to inspect steel billets for surface defects. This method involves passing an alternating current through a probe positioned near the billet's surface. Any defects or variations in the material's conductivity cause changes in the eddy currents, which can be detected and analyzed to identify surface defects. In conclusion, steel billets undergo meticulous inspection utilizing a combination of visual, dye penetrant, magnetic particle, ultrasonic, and eddy current testing methods. This ensures that any surface defects are promptly identified and addressed, thereby guaranteeing the quality and reliability of the final product.
Q: What are the common defects found in steel billets?
Steel billets can exhibit various defects, both from the manufacturing process and external factors. One such defect is surface cracks, which can arise from inadequate cooling, handling, or excessive stress during rolling or forming. These cracks can weaken the billet and compromise its strength and integrity. Internal voids or inclusions are another common defect, caused by impurities or foreign particles in the steel. These voids create weak points in the billet, potentially leading to structural failures or diminished mechanical properties. Misalignment or misshaping is a defect that occurs during cooling or forming, resulting in uneven thickness or dimensions. This flaw adversely impacts the billet's performance and suitability for its intended application. Furthermore, excessive segregation of alloying elements can lead to uneven property distribution within the billet. This inconsistency hampers the mechanical properties and overall quality. Lastly, surface defects like scale, pitting, or imperfections can manifest due to improper handling, storage, or exposure to harsh environments. Though these defects may not affect the billet's structural integrity, they do impact the surface finish and aesthetics of the final product. To ensure the production of high-quality and reliable steel products, it is crucial to identify and address these common defects in steel billets. Regular inspections, quality control measures, and appropriate handling and storage techniques play vital roles in minimizing and preventing these defects.
Q: What is the role of steel billets in the manufacturing of cutting tools?
The manufacturing of cutting tools heavily relies on steel billets. These billets act as the primary material from which the cutting tool is forged or machined. Typically, steel billets are composed of high-quality steel alloys, which possess vital properties like hardness, toughness, and wear resistance that are necessary for cutting tools. To initiate the manufacturing process, the steel billets are heated to a specific temperature called the forging temperature. This temperature allows the steel to become malleable, making it easier to shape and mold into the desired cutting tool. The heated billets are then subjected to a forging process using specialized equipment, where they are struck or pressed to shape them into the desired form, such as drills, saws, or blades. Following the initial forging, the billets undergo further machining to refine their shape and dimensions. Machining processes like milling, turning, and grinding are employed to eliminate excess material, achieve precise dimensions required for the cutting tool, and create the desired cutting edge geometry. The quality of the steel billets used in the manufacturing process significantly impacts the performance and durability of the cutting tool. Steel billets with high carbon content and alloying elements like chromium, vanadium, or tungsten are often preferred as they enhance the hardness, strength, and wear resistance of the cutting tool. These properties are essential to ensure that the cutting tool can withstand the high forces, temperatures, and abrasive conditions it will encounter during use. In conclusion, steel billets serve as the foundation for manufacturing cutting tools. They provide the necessary raw material and properties required to create high-quality cutting tools that demonstrate exceptional performance, durability, and precision.
Q: How do steel billets contribute to the shipbuilding industry?
The shipbuilding industry heavily relies on steel billets, which have a significant role in the construction of ships. These semi-finished products are molten steel that has solidified into a specific shape, usually a square or rectangular block. They are obtained through continuous casting or ingot casting. Steel billets play a crucial role in providing the raw material for fabricating various ship components. These billets undergo further processing, such as rolling, forging, or extrusion, to create different structural elements like plates, beams, angles, and channels. These components are then used in constructing the ship's hull, decks, bulkheads, and other structural parts. Moreover, steel billets possess advantageous properties that make them ideal for shipbuilding. Their high strength and durability ensure the ship's structural integrity and longevity, enabling it to withstand the harsh marine environment and constant exposure to seawater. Additionally, steel billets have excellent weldability, facilitating efficient and reliable joining of different components during ship assembly. Furthermore, the use of steel billets in shipbuilding offers a cost-effective solution. Steel is readily available and abundant, making it a cost-efficient material choice for ship construction. Furthermore, steel is highly recyclable, allowing for the reuse of steel billets and reducing environmental impact. In conclusion, steel billets are essential in the shipbuilding industry as they provide the raw material for fabricating various ship components. Their high strength, durability, weldability, and cost-effectiveness make them an ideal choice for constructing ships that can withstand the demanding marine environment. Ultimately, steel billets contribute to the safe and reliable operation of ships, supporting the growth and development of the shipbuilding industry.
Q: What are the specifications for alloy steel billets used in the defense industry?
The specifications for alloy steel billets used in the defense industry typically include requirements for high strength, durability, and resistance to corrosion and impact. Additionally, they may specify the alloy composition, heat treatment processes, dimensional tolerances, and surface finish, among other parameters, to ensure the billets meet the specific performance needs of defense applications.
Q: Can steel billets be used in the production of utensils and cutlery?
Yes, steel billets can be used in the production of utensils and cutlery. Steel billets are semi-finished products that can be further processed into various shapes and forms, including utensils and cutlery. Steel has excellent properties such as strength, durability, and corrosion resistance, which make it suitable for manufacturing utensils and cutlery. Steel billets are often melted and cast into specific shapes, then further processed through forging, stamping, or machining to create the desired utensils and cutlery items. The final products can range from spoons, forks, and knives to more intricate items like serving spoons, ladles, and cheese slicers. Steel utensils and cutlery are widely used and preferred due to their longevity and hygienic properties.
Q: How are steel billets used in the manufacturing of electrical appliances?
Steel billets are used in the manufacturing of electrical appliances as a primary raw material for various components, such as casings, frames, and supports. These billets are first heated and then shaped through processes like rolling or extrusion to create the desired parts. The strength, durability, and conductivity of steel make it an ideal material choice for ensuring the structural integrity and efficient functioning of electrical appliances.
Q: Can steel billets be used for artistic purposes?
Yes, steel billets can certainly be used for artistic purposes. While steel billets are typically used as raw material in industrial applications such as construction or manufacturing, they can also be transformed into beautiful works of art. Artists often use steel billets to create sculptures, decorative pieces, or even functional objects like furniture. The versatility of steel allows artists to mold and shape it into various forms, while its strength and durability ensure the longevity of the artwork. Moreover, the metallic appearance of steel can add a modern and industrial aesthetic to artistic creations. Overall, steel billets offer artists a unique medium to express their creativity and create visually stunning pieces.
Q: Are steel billets used in the production of musical instruments?
Yes, steel billets are commonly used in the production of musical instruments. They are often used to create various components such as keys, valves, and rods, which are essential parts of instruments like saxophones, trumpets, and trombones.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords