• Prime quality prepainted galvanized steel 625mm System 1
  • Prime quality prepainted galvanized steel 625mm System 2
  • Prime quality prepainted galvanized steel 625mm System 3
  • Prime quality prepainted galvanized steel 625mm System 4
  • Prime quality prepainted galvanized steel 625mm System 5
  • Prime quality prepainted galvanized steel 625mm System 6
Prime quality prepainted galvanized steel 625mm

Prime quality prepainted galvanized steel 625mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Construction building material galvanized color prepainted cold

rolled steel coil

 

Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and

a longer lifespan than that of galvanized steel sheets.

 

The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip

Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:

polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc

Prime quality prepainted galvanized steel 625mm

 

Standard and Grade :

Pre-paint galvanized steel coil



ASTM A755M-03

EN10169:2006

JISG 3312-2012

Commercial quality

                  CS

DX51D+Z

CGCC

 

 

 

Structure steel

SS GRADE 230

S220GD+Z

CGC340

SS GRADE 255

S250GD+Z

CGC400

SS GRADE 275

S280GD+Z

CGC440

SS GRADE 340

S320GD+Z

CGC490

SS GRADE550

S350GD+Z

CGC570


S550GD+Z


Application:

Outdoor

Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc

Indoor

Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect.


Q: Can steel billets be used in the automotive industry?
The automotive industry makes use of steel billets, which are semi-finished steel products. These billets are typically further processed into different shapes and forms. In automotive manufacturing, steel billets are commonly utilized for producing various components like engine parts, transmission parts, chassis components, and suspension systems. This choice offers several benefits such as high strength, durability, and cost-effectiveness. Moreover, steel billets can be easily shaped, machined, and welded to meet specific design requirements and performance standards in the automotive sector. As a result, steel billets play a crucial role in automobile production, contributing significantly to the overall performance, safety, and reliability of vehicles.
Q: What are the different types of defects found in steel billets?
Steel billets can commonly exhibit various types of defects. These defects may arise from the manufacturing process or external factors. A range of defects is often found in steel billets, including the following: 1. Surface defects: These defects are visible on the billet's surface and can comprise scale, scratches, cracks, or pits. Improper handling, inadequate cleaning, or excessive heat during manufacturing can lead to surface defects. 2. Internal defects: These defects are not apparent on the surface and can only be identified through non-destructive testing methods. Voids, inclusions, segregation, or non-uniform microstructures are examples of internal defects. They can impact the steel billet's mechanical properties and overall quality. 3. Decarburization: Exposure to high temperatures or oxygen can cause the surface layer of the billet to lose its carbon content, resulting in decarburization. This defect weakens the billet, reducing its strength and hardness. 4. Shrinkage cavities: When the steel billet solidifies and contracts unevenly, shrinkage cavities form. These cavities can compromise the mechanical properties and structural integrity of the billet. 5. Surface cracks: During the cooling and solidification process, thermal stresses can cause cracks to develop in the billet's surface. These cracks can extend into the interior, leading to additional defects and potential failure. 6. Segregation: Segregation refers to the uneven distribution of elements or impurities within the steel billet. This inconsistency can result in varying mechanical properties, reduced strength, and poor machinability. 7. Inclusions: Inclusions are foreign particles or impurities that become trapped within the steel billet during manufacturing. These inclusions can affect the mechanical properties and cause defects like porosity or brittleness. To ensure high-quality finished products, it is crucial to minimize and control these defects in steel billets. Implementing proper quality control measures, handling materials appropriately, and refining manufacturing processes can help reduce the occurrence of these defects and enhance the overall quality of steel billets.
Q: How are steel billets used in the manufacturing of construction formwork?
Construction formwork relies heavily on steel billets as a vital component. Formwork, which encompasses temporary or permanent molds or structures, is crucial for holding and supporting newly poured concrete until it solidifies. To create the formwork, semi-finished steel products known as steel billets are employed as the raw material. Typically, these billets are cast from molten steel into rectangular or square shapes and cooled to solidify. The resulting billets undergo further processing to produce the specific formwork components. Initially, the steel billets are cut into smaller sections, according to the desired formwork dimensions. These sections are then shaped and welded together to form the framework. The billets offer the necessary strength and durability to withstand the weight of concrete and external forces during construction. Following the completion of the framework, additional components such as panels, braces, and tie rods are attached. These components, also made from steel billets, enhance stability and distribute the load evenly across the formwork. Steel billets are the preferred material for formwork construction due to their high strength-to-weight ratio and exceptional resistance to corrosion. They can endure the pressure exerted by poured and curing concrete, ensuring the formwork remains intact and stable. Furthermore, steel billets are easily molded and shaped into diverse configurations, allowing for flexibility and customization in formwork design. In conclusion, steel billets play a vital role in manufacturing construction formwork. They provide the necessary strength, durability, and stability required to support freshly poured concrete until it solidifies. By utilizing steel billets, formwork manufacturers can create robust and reliable structures that contribute to efficient and safe construction processes.
Q: How are steel billets measured and classified?
Steel billets are typically measured and classified based on their dimensions, weight, and chemical composition. The dimensions of a billet, such as its length, width, and height, are measured to determine its size. The weight of the billet is determined by weighing it, either using a scale or by calculating its volume and density. Additionally, the chemical composition of the steel, including the percentage of elements like carbon, manganese, and silicon, is analyzed to classify the billet based on its grade or specific properties.
Q: How are steel billets used in the manufacturing of renewable energy equipment?
Steel billets are used in the manufacturing of renewable energy equipment as a primary raw material. These billets are shaped and processed to create various components such as wind turbine towers, solar panel frames, and hydroelectric power structures. The strong and durable nature of steel allows for the construction of robust and long-lasting renewable energy equipment, ensuring their reliability and performance in harnessing sustainable energy sources.
Q: What are the main factors affecting the machinability of steel billets?
The machinability of steel billets, which refers to the ease with which they can be cut and shaped by machining processes, is influenced by several key factors. These factors include the composition of the steel, its microstructure, the presence of impurities or inclusions, and the mechanical properties of the material. The composition of the steel plays a crucial role in determining its machinability. Elements such as carbon, manganese, sulfur, and phosphorus can significantly affect the cutting performance. For instance, higher carbon content can increase hardness, making the steel more difficult to machine. On the other hand, manganese can improve machinability by enhancing the formation of a favorable microstructure. The microstructure of the steel, which is influenced by factors such as heat treatment and alloying elements, also affects machinability. Fine-grained steels with a homogeneous microstructure are generally easier to machine than coarse-grained ones. Additionally, the presence of alloying elements like chromium or molybdenum can improve machinability by enhancing the material's hardness and wear resistance. Impurities or inclusions in the steel, such as non-metallic particles or oxides, can have a detrimental effect on machinability. These impurities can cause tool wear, surface defects, and poor chip formation during machining. Therefore, the level of impurities in the steel should be minimized through careful production and refining processes. Furthermore, the mechanical properties of the steel, including its hardness, strength, and ductility, influence machinability. High-strength steels are typically more challenging to machine due to their increased hardness, which requires more cutting force. Ductility is also crucial as it affects the ability of the steel to form chips during machining. A balance between hardness and ductility is desirable for optimal machinability. In conclusion, the machinability of steel billets is determined by various factors, including composition, microstructure, impurities, and mechanical properties. Understanding and controlling these factors is essential for ensuring efficient and effective machining processes.
Q: Can steel billets be used in the production of sculptures and artwork?
Yes, steel billets can be used in the production of sculptures and artwork. Steel's strength and durability make it a popular choice for creating large outdoor sculptures or intricate metal artwork. The material can be shaped, welded, and manipulated to bring artistic visions to life, offering artists a versatile medium to express their creativity.
Q: What are the different types of defects that can occur during steel billet production?
There are several types of defects that can occur during steel billet production. Some common defects include surface cracks, internal voids or inclusions, segregation, surface roughness, and dimensional deviations. Surface cracks can occur due to improper cooling or handling, while internal voids or inclusions can be caused by impurities in the raw materials. Segregation refers to uneven distribution of elements within the billet, leading to inconsistent properties. Surface roughness can result from inadequate surface preparation or poor rolling conditions. Dimensional deviations can occur due to improper alignment or adjustment of the equipment.
Q: What are the different types of extrusion processes used for shaping steel billets?
There are several different types of extrusion processes used for shaping steel billets. These processes are commonly employed in the manufacturing industry to produce a wide range of steel products with varying shapes and sizes. Some of the commonly used extrusion processes for shaping steel billets include: 1. Hot extrusion: This process involves heating the steel billet above its recrystallization temperature and then forcing it through a die to shape it into the desired form. The high temperature makes the steel more malleable, allowing for easier extrusion and shaping. 2. Cold extrusion: In contrast to hot extrusion, cold extrusion involves shaping the steel billet at room temperature or slightly above. This process is commonly used for producing smaller parts or components that require high precision and a smooth finish. 3. Direct extrusion: Direct extrusion involves placing the steel billet into a container or chamber with a die at one end. A ram or plunger is then used to apply force on the billet, pushing it through the die and shaping it into the desired form. This process is commonly used for producing long and continuous shapes, such as rods, tubes, and bars. 4. Indirect extrusion: In indirect extrusion, the steel billet is placed inside a chamber with a die at one end, similar to direct extrusion. However, in this process, the die is stationary, and the force is applied to the container or chamber, causing it to move and push the billet through the die. Indirect extrusion is often used for producing complex shapes that require more control over the extrusion process. 5. Impact extrusion: Impact extrusion is a specialized form of extrusion that involves shaping the steel billet using a high-velocity impact force. The billet is placed inside a die, and a punch or hammer strikes the billet, causing it to flow and shape into the desired form. This process is commonly used for producing hollow or tubular shapes, such as cans or containers. These are just a few of the different types of extrusion processes used for shaping steel billets. Each process has its own advantages and limitations, depending on the desired shape, size, and properties of the final product. Manufacturers choose the most appropriate extrusion process based on their specific requirements and considerations.
Q: How do steel billets contribute to the manufacturing of telecommunications devices?
Steel billets play a significant role in the manufacturing of telecommunications devices in several ways. Firstly, steel billets serve as a raw material for the production of various components used in telecommunications devices. These components include structural frames, housing, brackets, and mounts, among others. The strength and durability of steel make it an ideal choice for these parts, as they need to withstand harsh environments and provide stability to the devices. Furthermore, steel billets are often used in the production of transmission towers and antenna masts, which are essential for the efficient transmission and reception of signals in the telecommunications industry. These towers and masts need to be sturdy and capable of supporting heavy equipment to ensure uninterrupted communication. Steel, with its high strength and load-bearing capacity, is an ideal material for such applications. Moreover, steel billets are also used in the manufacturing of cable trays and conduits that are essential for organizing and protecting the various cables used in telecommunications devices. These cable management systems ensure that the cables are properly routed and protected from external factors such as moisture, heat, and physical damage. Steel's resistance to corrosion and its ability to withstand extreme conditions make it an excellent choice for these purposes. In addition to its physical properties, steel billets contribute to the manufacturing of telecommunications devices due to their cost-effectiveness. Steel is widely available and relatively inexpensive compared to other materials, making it a preferred choice for manufacturers. Its versatility and ease of fabrication also contribute to the efficient production of telecommunications devices. Overall, steel billets play a crucial role in the manufacturing of telecommunications devices by providing raw materials for various components, supporting infrastructure, and ensuring efficient cable management. Their strength, durability, cost-effectiveness, and availability make them an indispensable material in the telecommunications industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords