• Prime Q275 120mm Square Alloy Steel Billet System 1
  • Prime Q275 120mm Square Alloy Steel Billet System 2
  • Prime Q275 120mm Square Alloy Steel Billet System 3
  • Prime Q275 120mm Square Alloy Steel Billet System 4
  • Prime Q275 120mm Square Alloy Steel Billet System 5
  • Prime Q275 120mm Square Alloy Steel Billet System 6
Prime Q275 120mm Square Alloy Steel Billet

Prime Q275 120mm Square Alloy Steel Billet

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime Q275 120mm Square Alloy Steel Billet  

 Prime Q275 120mm Square Alloy Steel Billet

Description of Prime Q275 120mm Square Alloy Steel Billet  

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime Q275 120mm Square Alloy Steel Billet

 

Main Feature of Prime Q275 120mm Square Alloy Steel Billet  

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime Q275 120mm Square Alloy Steel Billet 

 A. Corrugated design makes it excellent waterproof performance
 B. Materials as prepainted steel sheets, galvanized steel sheets, galvalume (Al-Zn coated sheets) are available to make corrugated sheet.
 C.Those material are durable, anti-corrosion in bad weather for 20-30 years based on it's Zinc(Galvanized) coating or AZ (Galvalume) coating.
 D. Different shape of the sheet make it suitable for any style of buildings.
 E.Easy to install, no need special tools to fix the sheet.
 F.Light weight due to high strength to weight ratio of steel. Light weight means easier handling lower shipping costs, easier installation
 G. Different color is availbe base on the RAL Standard make your building more beautiful.
 H. We will provide the best solutions if you don't have a exact idea of the specification you want for the steel sheet based on your weather conditions, engineering structure, construction budget and so on.

  Prime Q275 120mm Square Alloy Steel Billet

 

Specifications of Prime Q275 120mm Square Alloy Steel Billet 

Product

Billet

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime Q275 120mm Square Alloy Steel Billet 

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.

Q: How are steel billets used in the manufacturing of structural steel?
Steel billets are a crucial raw material in the manufacturing of structural steel. These billets, which are essentially semi-finished steel products, are typically produced through a process called continuous casting, where molten steel is solidified into a rectangular shape. Once the steel billets are formed, they are further processed in steel mills to create various structural steel products such as beams, columns, angles, and channels. The billets are heated and then passed through a series of rolling mills, where they undergo intense pressure and shaping to achieve the desired dimensions and profiles. During the rolling process, the steel billets are elongated and transformed into long, slender shapes. This is achieved by repeatedly passing the billets through a set of rollers, which gradually reduce their cross-sectional area. The rolling mills can be configured differently to produce different types of structural steel products, catering to specific construction requirements. After the rolling process, the structural steel products are further subjected to various finishing processes such as cooling, cutting, straightening, and surface treatment. These processes ensure that the final product meets the required specifications, including dimensional accuracy, surface quality, and mechanical properties. The use of steel billets in the manufacturing of structural steel offers several advantages. Firstly, the semi-finished nature of billets allows for flexibility in customization, enabling the production of steel products with different sizes, shapes, and profiles. Additionally, the continuous casting process used to produce billets ensures a more consistent and uniform material quality, reducing the risk of defects or inconsistencies in the final product. Overall, steel billets play a vital role in the manufacturing of structural steel by providing a reliable and versatile raw material. Their transformation through rolling and other processes allows for the production of high-quality, durable, and structurally sound steel products that are widely used in construction, infrastructure, and industrial applications.
Q: What are the different types of surface finishes available for steel billets?
There are several different types of surface finishes available for steel billets, each serving a specific purpose and offering unique characteristics. Some of the most common surface finishes for steel billets include: 1. Hot Rolled: This is the most basic surface finish, achieved by heating the steel billet above its recrystallization temperature and then rolling it to the desired shape and size. Hot rolled steel billets have a rough and scaled surface, which is suitable for applications where aesthetics are not a primary concern. 2. Cold Rolled: This surface finish is obtained by further processing the hot rolled billets through a series of cold rolling processes. Cold rolled steel billets have a smoother and more refined surface, with tighter tolerances and improved dimensional accuracy. 3. Pickled and Oiled: This surface finish involves removing any rust, scale, or mill scale from the steel billets by immersing them in an acidic solution, commonly known as pickling. After pickling, the steel billets are oiled to provide temporary corrosion protection. This finish is ideal for applications where cleanliness and corrosion resistance are crucial. 4. Galvanized: Galvanizing is a surface finishing process that involves coating the steel billets with a layer of zinc to provide enhanced corrosion resistance. This finish is particularly suitable for outdoor applications or environments with high humidity, where the steel needs protection against rust and corrosion. 5. Electroplated: Electroplating is a process where a thin layer of metal, such as nickel or chromium, is deposited onto the steel billets through an electrochemical reaction. This surface finish provides improved aesthetics, enhanced corrosion resistance, and can also offer specific functional properties, such as hardness or wear resistance. 6. Powder Coated: Powder coating is a surface finishing technique where a dry powder is electrostatically applied to the steel billets and then cured under heat to form a durable and protective coating. This finish offers excellent corrosion resistance, impact resistance, and a wide range of color options, making it popular in architectural and decorative applications. 7. Anodized: Anodizing is a surface treatment commonly used for aluminum, but it can also be applied to steel billets. This process involves creating an oxide layer on the surface of the steel by subjecting it to an electrolytic process. Anodized steel billets exhibit improved corrosion resistance, increased hardness, and can be dyed in various colors for aesthetic purposes. These are just a few examples of the different types of surface finishes available for steel billets. The choice of finish depends on the specific requirements of the application, including aesthetics, corrosion resistance, durability, and functional properties.
Q: How are steel billets used in the manufacturing of construction equipment?
Steel billets are a crucial component in the manufacturing of construction equipment. These billets, which are essentially semi-finished steel products, serve as the primary raw material for creating various components and structures used in construction machinery. One of the main applications of steel billets in construction equipment manufacturing is for forging and casting processes. Billets are heated to high temperatures and then forged or cast into different shapes and sizes based on the specific requirements of the equipment being produced. Components such as gears, connecting rods, axle shafts, and hydraulic cylinders are commonly manufactured using this method. Furthermore, steel billets are also used in the production of structural components in construction equipment. These billets are typically shaped into beams, columns, and plates through hot rolling or cold drawing processes. These structural components provide the necessary strength and stability to the construction equipment, ensuring durability and long-lasting performance. Moreover, steel billets are utilized in the fabrication of frames and chassis of construction machinery. The billets are cut, shaped, and welded together to form a robust and sturdy framework that serves as the backbone of the equipment. This framework provides structural integrity, support, and rigidity to the construction equipment, allowing it to withstand heavy loads, vibrations, and harsh working conditions. In addition to the aforementioned applications, steel billets are also used to create other essential parts of construction equipment, such as buckets, blades, cutting edges, and tracks. These parts are crucial for the efficient operation of machinery like excavators, bulldozers, cranes, and loaders. Overall, steel billets play a vital role in the manufacturing of construction equipment by providing the necessary raw material for forging, casting, and fabricating various components and structures. The use of high-quality steel billets ensures that the construction equipment possesses the required strength, durability, and resilience to perform optimally in demanding construction environments.
Q: What is the purpose of using steel billets in the manufacturing industry?
The purpose of using steel billets in the manufacturing industry is primarily to serve as a raw material for further processing and shaping into various steel products. Steel billets are semi-finished metal products that are cast in a specific shape and size, typically in a square or rectangular cross-section. These billets provide a consistent and standardized starting point for the production of a wide range of steel products, such as bars, rods, wire, tubes, pipes, and structural components. By using steel billets, manufacturers can ensure uniformity in the material properties and dimensions of their end products, which is crucial for maintaining quality and meeting industry standards. Moreover, steel billets offer several advantages in terms of their strength, durability, and versatility. Steel is known for its exceptional strength-to-weight ratio, making it an ideal choice for applications that require high structural integrity and load-bearing capacity. The use of steel billets allows manufacturers to produce components that can withstand heavy loads, extreme temperatures, and harsh environmental conditions. Furthermore, steel billets can be easily shaped and processed through various techniques such as rolling, forging, extrusion, and machining. This flexibility enables manufacturers to create a wide range of steel products with different shapes, sizes, and properties, catering to diverse industrial needs. Overall, the purpose of using steel billets in the manufacturing industry is to provide a reliable and versatile raw material for producing high-quality steel products that serve various applications in construction, automotive, aerospace, machinery, infrastructure, and many other sectors.
Q: What is the role of steel billets in the construction of offshore platforms?
Steel billets play a crucial role in the construction of offshore platforms as they are the primary raw material used to fabricate various structural components such as beams, columns, and braces. These billets undergo a series of processes including heating, rolling, and shaping to form the desired structural shapes. Their high strength and durability make them ideal for withstanding the harsh marine environment and supporting the weight of the platform. Ultimately, steel billets serve as the building blocks for offshore platforms, ensuring the structural integrity and safety of these critical structures.
Q: How are steel billets used in the production of agricultural irrigation systems?
Steel billets are an essential component in the production of agricultural irrigation systems. These billets, which are semi-finished steel products, are used to create various components of irrigation systems such as pipes, fittings, and valves. When manufacturing irrigation pipes, steel billets serve as the raw material that undergoes a series of processes to form seamless or welded pipes. The billets are heated and then passed through a piercing mill, where they are further elongated and shaped into a hollow tube. These tubes are then stretched and rolled to achieve the desired diameter and thickness. The resulting steel pipes are strong, durable, and resistant to corrosion, making them ideal for use in agricultural irrigation systems. Steel billets are also used to produce fittings and valves for irrigation systems. Fittings such as elbows, tees, and reducers are manufactured by shaping and machining steel billets to meet specific size and shape requirements. These fittings are crucial in connecting and directing water flow within the irrigation system. Additionally, steel billets are sometimes used in the production of pump housings and other structural components of irrigation systems. Due to their strength and stability, steel billets provide the necessary support and durability required in these applications. Overall, steel billets play a vital role in the production of agricultural irrigation systems by providing a reliable and robust material for pipes, fittings, valves, and other components. Their use ensures the longevity and efficiency of these systems, allowing for effective water distribution and irrigation in agricultural fields.
Q: What are the different surface treatments for improved surface hardness in steel billets?
Some of the different surface treatments for improved surface hardness in steel billets include carburizing, nitriding, induction hardening, and boronizing. These treatments involve introducing carbon, nitrogen, or boron into the surface layer of the steel to enhance its hardness and wear resistance.
Q: What are the main properties of steel billets?
Steel billets are semi-finished metal products that serve as the starting material for various steel products. They possess several important properties that make them suitable for further processing and shaping into different forms. Firstly, steel billets exhibit a high level of strength and durability. This is primarily due to the composition of steel, which is predominantly made up of iron with small amounts of carbon and other elements. This composition gives steel billets excellent mechanical properties, including high tensile strength and resistance to deformation. Secondly, steel billets have good heat transfer properties. Steel is known for its ability to conduct heat efficiently, which makes it an ideal material for applications where thermal conductivity is required, such as in the manufacturing of automotive parts or construction materials. Additionally, steel billets possess good machinability. Machinability refers to the ease with which a material can be shaped or formed using various machining processes. Steel billets can be easily cut, drilled, and shaped into desired forms, allowing for efficient processing and fabrication. Furthermore, steel billets have excellent weldability. Steel is known for its compatibility with welding processes, allowing for the joining of different steel components or the repair of damaged steel structures. This property is crucial in various industries, including construction, automotive, and shipbuilding. Lastly, steel billets have a high level of recyclability. Steel is one of the most recycled materials globally, with a significant portion of steel production being derived from recycled steel. This makes steel billets an environmentally friendly choice, as they can be recycled and repurposed multiple times without losing their properties. In summary, the main properties of steel billets include high strength and durability, good heat transfer properties, excellent machinability and weldability, and a high level of recyclability. These properties make steel billets a versatile and widely used material in various industries, ranging from construction and manufacturing to automotive and aerospace.
Q: What are the different heat treatment processes applied to steel billets?
There are several different heat treatment processes that can be applied to steel billets, depending on the desired properties and characteristics of the final product. Some of the most common heat treatment processes used for steel billets include: 1. Annealing: This process involves heating the steel billets to a high temperature and then slowly cooling them, usually in a controlled atmosphere or furnace. Annealing helps to relieve internal stresses, improve machinability, and enhance the steel's ductility and toughness. 2. Normalizing: Normalizing is a heat treatment process that involves heating the steel billets to a temperature above the critical range and then allowing them to cool in still air. This process helps to refine the grain structure, improve the mechanical properties, and enhance the machinability of the steel. 3. Quenching: Quenching is a rapid cooling process that involves immersing the steel billets in a quenching medium, such as water, oil, or polymer, after they have been heated to a high temperature. This process creates a hardened and stronger steel with improved wear resistance, but it may also result in increased brittleness. 4. Tempering: Tempering is a heat treatment process that follows quenching and involves reheating the hardened steel billets to a specific temperature and then cooling them in still air. This process helps to relieve residual stresses, reduce brittleness, and improve the toughness and ductility of the steel. 5. Austempering: Austempering is a heat treatment process that involves quenching the steel billets in a bath of molten salt or other medium at a temperature just above the critical range, followed by holding them at that temperature until the desired transformation occurs. Austempering produces a steel with high strength, improved ductility, and reduced distortion. 6. Martempering: Martempering is a quenching process similar to austempering, but with a shorter holding time at the quenching temperature. This process results in a steel with a combination of high strength and toughness, as well as reduced distortion. 7. Case hardening: Case hardening is a heat treatment process that involves adding carbon to the surface layer of the steel billets, typically through carburizing or nitriding. This process forms a hardened case with increased wear resistance, while maintaining a more ductile core. These are just a few examples of the heat treatment processes that can be applied to steel billets. The specific process used will depend on the desired properties of the final product and the type of steel being treated.
Q: What are the different shapes of steel billets?
Steel billets can come in various shapes, including square, round, rectangular, and hexagonal.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords