• Steel billet for rebar steel material from china System 1
  • Steel billet for rebar steel material from china System 2
Steel billet for rebar steel material from china

Steel billet for rebar steel material from china

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
24983 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Size:
100mm to 165mm
Grade:
Q195/Q215/Q235/Q275
Length:
6~12meters

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into 

more functional shapes and sizes. While they have already been put in the furnace, they still require a series 

of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in 

hardware stores, or used for different applications. The unformed billets, however, can be used in striking 

currency such as coins and as reserves, similar to gold bars.

 

Used for the plant, the bridge,shipment building high-rise building construction,lifting and transportation machinery, equipment manufracturing base building the 

support foundation pile manufacturing.

 

Qaulity:own factory, stable quality

Tolerance: Strictly according to the G/B and JIS standard

Delivery time: within 45 days after receiving the L/C or advanced T/T payment.

Price term: FOB/CIF/ CFR according to clients requirements

Payment terms: 100%Irrevercable L/C at sight or T/T

 

. 

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

Steel billet for rebar steel material from china

Steel billet for rebar steel material from china

Steel billet for rebar steel material from china

Steel billet for rebar steel material from china

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

Q: What are the main factors affecting the tensile strength of steel billets?
There are several main factors that affect the tensile strength of steel billets. Firstly, the composition of the steel plays a significant role. The presence of certain elements, such as carbon, manganese, and silicon, can greatly influence the strength of the steel. Carbon, in particular, is a key element in increasing the strength of steel through its ability to form strong interatomic bonds. Secondly, the heat treatment process employed during the production of steel billets is crucial. Heat treatment, such as quenching and tempering, can significantly enhance the tensile strength of the steel by manipulating its microstructure. Quenching involves rapidly cooling the steel, which creates a hardened structure, while tempering involves reheating the steel to a specific temperature to achieve the desired balance of hardness and toughness. Additionally, the grain size of the steel also affects its tensile strength. Fine-grained steel generally exhibits higher strength due to the increased number of grain boundaries, which act as barriers to dislocation movement. On the other hand, coarse-grained steel tends to have lower strength as it allows for easier dislocation movement. Moreover, the presence of impurities or defects in the steel can weaken its tensile strength. Inclusions, such as sulfur, phosphorus, and non-metallic inclusions, can act as stress concentration points and promote crack initiation, leading to reduced strength. Similarly, the presence of voids, porosity, or other structural defects can compromise the overall strength of the steel billets. Lastly, the processing conditions during the manufacturing of steel billets can affect their tensile strength. Parameters such as rolling and forging temperatures, deformation rate, and cooling rate can influence the resulting microstructure and, consequently, the strength of the steel. In conclusion, the main factors affecting the tensile strength of steel billets include the steel composition, heat treatment process, grain size, impurities or defects, and processing conditions. Understanding and optimizing these factors are crucial for producing steel billets with the desired mechanical properties.
Q: How do steel billets contribute to the manufacturing of kitchen appliances?
Steel billets are an essential component in the manufacturing of kitchen appliances. These billets, which are semi-finished steel products, are typically in the form of a rectangular or square shape and are produced through a process called continuous casting. The first way steel billets contribute to the manufacturing of kitchen appliances is by serving as the primary raw material for the production of various appliance components. For example, kitchen appliances such as stoves, ovens, refrigerators, and dishwashers require a sturdy and durable structure, and steel billets provide the necessary strength and resilience. The billets are processed further through various techniques like hot rolling, forging, or extrusion to form specific appliance parts such as frames, doors, panels, and handles. Secondly, steel billets play a crucial role in ensuring the longevity and reliability of kitchen appliances. Steel, known for its high tensile strength and resistance to corrosion, allows manufacturers to create appliances that can withstand the rigors of daily use and last for a long time. By using steel billets as the base material, kitchen appliances can withstand high temperatures, heavy loads, and harsh environments without compromising their structural integrity. Furthermore, steel billets contribute to the aesthetics of kitchen appliances. The smooth and polished surface of steel provides an attractive finish and modern look to appliances, making them visually appealing to consumers. Steel can also be easily manipulated to achieve different shapes and designs, allowing manufacturers to create sleek and stylish appliances that complement the overall kitchen decor. In addition to these factors, steel billets have excellent heat conductivity properties, which is vital for kitchen appliances like stoves and ovens. The even distribution of heat throughout the appliance ensures efficient cooking and baking, ensuring that food is cooked thoroughly and evenly. Overall, steel billets are integral to the manufacturing of kitchen appliances due to their strength, durability, aesthetics, and heat conductivity properties. Without these billets, it would be challenging to produce high-quality, reliable, and visually appealing kitchen appliances that meet the demands of consumers.
Q: What are the different methods of surface treatment for steel billets?
Various methods exist for surface treatment of steel billets, each serving a distinct purpose and offering unique advantages. Among the most commonly employed techniques are: 1. Pickling: This involves immersing the steel billets in an acid solution to eliminate surface impurities like rust or scale. Pickling enhances surface finish and readies the steel for subsequent treatment or processing. 2. Shot blasting: In this method, high-speed steel shots or grits are used to bombard the steel billets, eliminating surface contaminants and creating a uniform texture. Shot blasting is frequently employed to remove rust, scale, or paint, and it can enhance the adhesion of subsequent coatings or paints. 3. Galvanizing: This treatment entails coating the steel billets with a layer of zinc to provide corrosion resistance. Galvanizing can be accomplished through hot-dip galvanizing, where the steel is immersed in a molten zinc bath, or through electroplating, where a thin layer of zinc is deposited on the surface using an electric current. 4. Painting or powder coating: Steel billets can be painted or coated with powder to deliver both aesthetic appeal and protection against corrosion. Paints or powder coatings create a barrier between the steel surface and the environment, preventing moisture and other corrosive agents from reaching the metal. 5. Passivation: This method requires treating the steel billets with a chemical solution, typically an acid, to remove any free iron or iron oxide from the surface. Passivation enhances the corrosion resistance of stainless steel and other alloys by creating a passive oxide layer that safeguards against further oxidation or rusting. 6. Nitriding: Nitriding is a surface hardening treatment where the steel billets are exposed to an atmosphere rich in nitrogen at elevated temperatures. This process diffuses nitrogen into the steel's surface, forming a hardened layer that enhances wear resistance and improves fatigue strength. 7. Chrome plating: Steel billets can be coated with a layer of chromium through electroplating, providing enhanced corrosion resistance and a glossy appearance. Chrome plating is frequently utilized in applications where aesthetics and durability are crucial, such as automotive parts or decorative fixtures. These examples represent only a fraction of the available surface treatment methods for steel billets. The selection of a particular technique depends on factors such as the desired outcome, the specific properties required, and the intended application of the steel billets.
Q: How are steel billets stored and transported?
Steel billets are typically stored outdoors in large yards or warehouses, where they are organized in stacks or rows. To protect them from corrosion, billets are often covered with tarpaulins or anti-rust coatings. When it comes to transportation, steel billets are usually moved using heavy machinery like cranes or forklifts. They are loaded onto trucks, railcars, or ships, depending on the distance to be traveled. To ensure safety during transport, billets are secured with chains, straps, or other fastening methods to prevent shifting or falling.
Q: How do steel billets differ from steel bars?
Steel billets and steel bars are both intermediate steel products that are used in various industries for further processing. However, there are some key differences between the two. 1. Shape: Steel billets are typically square or rectangular in shape, with cross-sectional dimensions ranging from a few inches to several feet. They are typically produced through continuous casting or hot rolling processes. On the other hand, steel bars are cylindrical in shape and have a uniform diameter throughout their length. They are usually produced through hot rolling or cold drawing processes. 2. Size: Steel billets are larger in size compared to steel bars. Billets can have lengths ranging from a few feet to several meters, while their cross-sectional dimensions can be customized based on the requirements of the final product. Steel bars, on the other hand, are typically produced in standardized sizes and lengths, such as 6 meters or 12 meters, and have a consistent diameter. 3. Production process: Steel billets are usually produced through continuous casting or hot rolling processes. Continuous casting involves pouring molten steel into a mold to form a solid billet, while hot rolling involves passing the billet through a series of rollers to reduce its cross-sectional dimensions. Steel bars, on the other hand, are produced through hot rolling or cold drawing processes. Hot rolling involves passing billets through a series of rollers to give them the desired shape and size, while cold drawing involves pulling the hot rolled bars through a die to further reduce their diameter and improve their surface finish. 4. Applications: Steel billets are primarily used as raw material for further processing into various steel products, such as bars, rods, wires, and tubes. They are also utilized in the forging industry to produce forged components. Steel bars, on the other hand, are used in a wide range of applications, including construction, manufacturing, infrastructure, and automotive industries. They are commonly used as reinforcement in concrete structures, as well as for the production of shafts, gears, axles, and other machine parts. In summary, steel billets and steel bars differ in terms of shape, size, production process, and applications. While billets are larger and have a square or rectangular shape, bars are cylindrical and have a consistent diameter. Billets serve as raw material for further processing, while bars are used in various industries for their specific applications.
Q: How do steel billets contribute to the manufacturing of construction materials?
The utilization of steel billets is crucial in the manufacturing of construction materials, playing a vital role in the industry. These billets serve as the primary raw material that undergoes transformation into a diverse range of steel products, which are then utilized in construction projects. To begin with, steel billets act as the starting point for the production of different types of steel products, including bars, rods, beams, and sections. These products are of utmost importance in the construction sector, as they provide structural support and reinforcement. For instance, steel bars are commonly employed in the construction of reinforced concrete structures, thereby imparting strength and durability to the building. Moreover, steel billets find application in the production of pipes and tubes, which hold great significance in plumbing, heating, ventilation, and air conditioning (HVAC) systems within buildings. These pipes and tubes ensure the efficient flow of water, gas, and air, thereby contributing to the overall functionality and comfort of the structure. Furthermore, steel billets are utilized in the manufacturing of steel sheets and plates, which are extensively used in construction applications such as roofing, cladding, and flooring. These steel sheets and plates offer exceptional strength, resistance to corrosion, and aesthetic appeal. They are commonly employed in high-rise buildings, warehouses, and industrial facilities. Additionally, steel billets play a crucial role in the production of prefabricated construction materials. Prefabrication involves the manufacturing of building components off-site, which are subsequently transported and assembled on-site. Steel billets are employed in the creation of prefabricated steel frames, trusses, and panels, streamlining the construction process and reducing time and labor costs. In conclusion, steel billets serve as the foundation of the construction materials industry. Their transformation into various steel products is imperative for structural support, reinforcement, plumbing, HVAC systems, roofing, cladding, flooring, and prefabrication. The utilization of steel billets ensures the strength, durability, and functionality of construction materials, making a significant contribution to the overall quality of construction projects.
Q: How are steel billets used in the manufacturing of consumer goods?
Steel billets are an essential component in the manufacturing of various consumer goods. These billets are semi-finished steel products that are typically hot-rolled into various shapes, such as bars, rods, or sheets before they are used in the production process. One way steel billets are used in the manufacturing of consumer goods is in the production of automobiles. They are often transformed into different parts of a car's body, such as doors, fenders, or hoods. The strength and durability of steel make it an ideal material for these components, ensuring the safety and longevity of the vehicle. Another significant application of steel billets is in the construction industry. They are commonly used to produce beams, columns, and other structural elements that are crucial for building infrastructure like bridges, buildings, and stadiums. Steel's high tensile strength and ability to withstand heavy loads make it an ideal material for these applications. Steel billets also play a vital role in the manufacturing of appliances and household goods. For instance, they are used to produce refrigerators, washing machines, and ovens, where steel's resistance to corrosion and heat is highly valued. Additionally, steel billets are utilized in the production of furniture, tools, and kitchenware, providing strength and stability to these consumer goods. In the production of consumer goods, steel billets are typically subjected to various processes such as cutting, welding, and shaping to achieve the desired final product. These billets serve as the raw material that undergoes further manufacturing steps, including machining, forging, or casting, to create the specific components or parts needed. Overall, steel billets are an integral part of the manufacturing process for a wide range of consumer goods. The versatility, strength, and durability of steel make it a preferred material in industries such as automotive, construction, appliances, and furniture.
Q: What are the different types of straightening methods used for steel billets?
There are several types of straightening methods used for steel billets, including rotary straightening, roller straightening, and hydraulic straightening. Rotary straightening involves rotating the billet while applying pressure to straighten it. Roller straightening uses a series of rollers to apply pressure and straighten the billet. Hydraulic straightening uses hydraulic force to straighten the billet. Each method has its own advantages and may be chosen based on the specific requirements of the steel billet.
Q: How do steel billets contribute to the manufacturing of furniture and fixtures?
Due to their unique properties, steel billets are indispensable in the production of furniture and fixtures. The strength and stability they offer are essential for constructing these items, providing a solid framework that can support their weight and load-bearing capacity. This ensures that the furniture and fixtures will remain functional for an extended period of time. Additionally, the malleability of steel billets allows for the creation of intricate designs and shapes, enhancing the aesthetic appeal of furniture and fixtures. Manufacturers can take advantage of this flexibility to produce a wide range of styles and patterns that cater to different consumer preferences and interior design themes. Moreover, steel billets can be easily welded, making them perfect for joining various components together during the manufacturing process. This welding capability ensures a seamless and secure construction, ultimately improving the overall quality and durability of the furniture and fixtures. Furthermore, steel billets possess corrosion-resistant properties, making them suitable for indoor and outdoor furniture and fixtures alike. This resistance to rust and decay guarantees that these items can withstand harsh environmental conditions, preserving their appearance and structural integrity over time. In conclusion, the role of steel billets in the manufacturing of furniture and fixtures cannot be overstated. Their strength, malleability, weldability, and corrosion resistance contribute to the durability, design flexibility, and longevity of these items, making them a preferred choice for both manufacturers and consumers.
Q: What is the role of steel billets in the manufacturing of railway wheels?
The production of railway wheels heavily relies on steel billets, which serve as the primary raw material. These billets are crucial in creating wheels that possess exceptional strength, durability, and the ability to endure heavy loads, extreme temperatures, and constant wear and tear. To begin with, steel billets undergo a melting process and are then shaped into a cylindrical form, similar to the final shape of the railway wheel. Subsequently, these billets go through a series of manufacturing steps, including hot rolling, forging, and machining, to achieve the desired shape and dimensions of the railway wheel. One of the key advantages of using steel billets lies in their remarkable strength and toughness. Steel is widely recognized for its exceptional mechanical properties, such as high tensile strength and hardness. These characteristics are indispensable for railway wheels, as they need to bear immense loads and resist deformation even under extreme pressures. Furthermore, steel billets provide the necessary metallurgical properties essential for railway wheels. They can be alloyed with additional elements like carbon, manganese, and chromium to enhance their strength, hardness, and resistance to corrosion and fatigue. This ensures that the railway wheels maintain their structural integrity and performance over an extended period. In conclusion, steel billets play a fundamental role in the manufacturing process of railway wheels. They provide the raw material needed to create robust, durable, and dependable wheels that can withstand the challenging conditions of railway operations. By utilizing steel billets, railway wheels are able to meet the strict safety, performance, and longevity requirements of the transportation industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords