• Square Steel Billet Q235 3SP Grade Prime Quality 10# System 1
  • Square Steel Billet Q235 3SP Grade Prime Quality 10# System 2
  • Square Steel Billet Q235 3SP Grade Prime Quality 10# System 3
  • Square Steel Billet Q235 3SP Grade Prime Quality 10# System 4
  • Square Steel Billet Q235 3SP Grade Prime Quality 10# System 5
  • Square Steel Billet Q235 3SP Grade Prime Quality 10# System 6
Square Steel Billet Q235 3SP Grade Prime Quality 10#

Square Steel Billet Q235 3SP Grade Prime Quality 10#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 3SP Grade Prime Quality 10#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 3SP Grade Prime Quality 10#

Main Feature Square Steel Billet Q235 3SP Grade Prime Quality 10#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 3SP Grade Prime Quality 10#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 3SP Grade Prime Quality 10#


Specifications of Square Steel Billet Q235 3SP Grade Prime Quality 10#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 3SP Grade Prime Quality 10#

FAQ of Square Steel Billet Q235 3SP Grade Prime Quality 10#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q: What is the average lifespan of a steel billet in the automotive industry?
Various factors can affect the average lifespan of a steel billet in the automotive industry. Generally, these billets serve as raw materials for producing automotive parts like engine components, chassis, and body structures. These parts are designed to last as long as the vehicle itself, which can be anywhere from 10 to 20 years or more. The specific lifespan of a steel billet in the automotive industry depends on its application and the level of stress or wear it experiences during its service. For example, engine components such as crankshafts or connecting rods may undergo higher levels of stress and wear due to the combustion process, which may require replacement or refurbishment after a certain period. Furthermore, advancements in material science and manufacturing technologies have resulted in the creation of stronger and more durable steel alloys, thus increasing the lifespan of automotive parts. When combined with regular maintenance and proper vehicle usage, these advancements contribute to the longevity of steel billets used in the automotive industry. It is important to consider that other factors, such as corrosion, environmental conditions, and manufacturing quality, can also influence the lifespan of a steel billet. To ensure the longevity and reliability of their products, manufacturers and automotive companies prioritize quality control measures. In conclusion, although the specific lifespan of a steel billet in the automotive industry may vary, it is generally designed to last as long as the vehicle itself, which can range from several years to multiple decades. Advances in materials and manufacturing techniques improve the durability and overall performance of steel billets, ensuring their longevity in automotive applications.
Q: How are steel billets classified based on their chemical composition?
Steel billets can be classified based on their chemical composition using different grading systems. One common classification method is based on the carbon content of the billets. This method categorizes steel billets into three main groups: low carbon steel billets, medium carbon steel billets, and high carbon steel billets. Low carbon steel billets typically have a carbon content of less than 0.25%. These billets are known for their excellent ductility and weldability. They are commonly used in applications that require good formability and low strength, such as construction materials and automotive components. Medium carbon steel billets usually have a carbon content ranging from 0.25% to 0.60%. These billets have improved strength and hardness compared to low carbon steel billets. They are commonly used in applications that require higher strength, such as machinery parts, shafts, and gears. High carbon steel billets have a carbon content greater than 0.60%. These billets are known for their exceptional strength and hardness. They are commonly used in applications that require high wear resistance, such as cutting tools, springs, and knives. Apart from the carbon content, other chemical elements present in the steel billets can also affect their classification. For example, the presence of alloying elements like chromium, nickel, and molybdenum can enhance the properties of the steel, such as corrosion resistance or heat resistance. Steel billets can be further classified based on the specific alloying elements present and their concentrations. Overall, the classification of steel billets based on their chemical composition allows for better understanding and selection of the appropriate material for specific applications, ensuring the desired properties and performance of the final product.
Q: What are the main uses of steel billets in the automotive industry?
Steel billets are primarily used in the automotive industry for manufacturing various components such as engine parts, transmission parts, chassis, suspension systems, and body structures. These billets serve as a raw material for forging and casting processes, allowing for the production of durable and high-strength automotive components that ensure safety, performance, and longevity of vehicles.
Q: How are steel billets prepared for further processing?
Steel billets go through a series of steps to prepare them for further processing. These steps include heating, shaping, and cooling. The initial step in the preparation process involves heating the steel billets in a furnace to a specific temperature known as the reheat temperature. This temperature is essential as it makes the steel billets malleable and easier to shape. Once the billets reach the reheat temperature, they are transferred to a shaping machine, usually a rolling mill. The rolling mill applies pressure to the heated billets, causing them to undergo plastic deformation. Depending on the desired end product, the rolling mill can shape the steel billets into various forms such as bars, rods, or sheets. After shaping, the steel billets are rapidly cooled through a process called quenching. Quenching helps to harden the steel and improve its overall strength and durability. The cooling method can differ based on the specific requirements of the steel, with options such as air cooling, water quenching, or oil quenching. Once the billets have been shaped and quenched, they may undergo additional processing steps like surface treatment or further heat treatments. These processes, such as galvanizing, tempering, or annealing, help achieve specific properties or surface finishes. In summary, the preparation of steel billets for further processing involves heating them to a reheat temperature, shaping them using a rolling mill, quenching them for hardening, and potentially undergoing additional treatments to meet specific requirements. These steps are vital in ensuring that the steel billets are ready for their intended applications in various industries.
Q: How are the surface defects of steel billets repaired?
The surface defects of steel billets can be repaired through various methods, depending on the type and severity of the defect. Some common surface defects include cracks, seams, laps, and scale. One method of repairing surface defects is through grinding or milling. This involves removing the surface layer of the billet using abrasive tools or machines. Grinding can effectively eliminate small defects such as scale, pits, or minor cracks. However, it may not be suitable for deep or extensive defects. For more severe defects like cracks or seams, a common repair technique is welding. The damaged areas are preheated to a suitable temperature, and then the cracks or seams are filled using welding electrodes or filler materials. This process requires skilled welders to ensure proper fusion and strength of the repaired area. In some cases, surface defects can be repaired through mechanical methods such as peening or hammering. These techniques involve using specialized tools to reshape and smooth out the affected areas. Peening can be effective for eliminating shallow cracks or surface irregularities. Ultrasonic testing is another method used to identify and repair surface defects in steel billets. It involves using high-frequency sound waves to detect any hidden cracks or flaws. Once the defects are identified, appropriate repair methods can be employed. It is important to note that the repair process for surface defects in steel billets requires careful inspection and assessment to determine the most suitable method. Quality control measures must be put in place to ensure that the repaired billets meet the required standards for strength and integrity.
Q: How do steel billets contribute to the oil and gas industry?
Steel billets are essential components in the oil and gas industry, playing a significant role in various applications. These billets are semi-finished metal products that are used as raw materials for manufacturing pipes, valves, fittings, and other equipment required in the extraction, transportation, and refining of oil and gas. One of the primary uses of steel billets in the industry is for the production of seamless pipes. These pipes are crucial for the transportation of oil and gas over long distances, as they provide a secure and reliable means of conveying these valuable resources. Steel billets are heated and then rolled into seamless pipes, which offer excellent strength, durability, and resistance to high-pressure environments. These pipes are utilized in offshore drilling, subsea pipelines, and other critical applications within the oil and gas sector. Moreover, steel billets are also utilized in the manufacturing of various valves and fittings used in oil and gas infrastructure. Valves are crucial for controlling the flow of oil and gas throughout the production and transportation processes. Steel billets are shaped into valve bodies, which are then machined to precise specifications, ensuring proper functionality and reliability. Similarly, fittings, such as couplings, elbows, and tees, are manufactured from steel billets to connect different sections of pipelines and equipment, providing a secure and leak-free system. Furthermore, steel billets contribute to the oil and gas industry by being a primary material for constructing storage tanks and pressure vessels. These tanks are used for the storage of crude oil, natural gas, and various petroleum products. Steel billets are transformed into plates, which are then welded together to form these large-scale storage containers. The inherent strength and corrosion resistance of steel make it an ideal material for such applications, ensuring the safe containment of valuable resources. In summary, steel billets are essential to the oil and gas industry as they are transformed into various components used in the extraction, transportation, and refining processes. From seamless pipes for long-distance transportation to valves, fittings, and storage tanks, steel billets provide the necessary strength, durability, and reliability required in this demanding industry.
Q: What are the main factors affecting the magnetic properties of steel billets?
The magnetic properties of steel billets are impacted by three key factors: composition, microstructure, and processing conditions. To begin, the composition of the steel billet plays a crucial role in determining its magnetic properties. The inclusion of specific alloying elements like nickel, cobalt, and manganese can enhance the magnetic characteristics of the steel. These elements align the magnetic domains within the steel, leading to increased magnetization and improved magnetic properties. Next, the microstructure of the steel billet influences its magnetic behavior. Factors such as grain size, crystal structure, and the presence of defects or impurities can all affect the magnetic properties of the material. Smaller grain sizes tend to exhibit superior magnetic properties due to better alignment of the magnetic domains. Furthermore, a single-phase crystal structure generally possesses greater magnetism compared to a multi-phase structure. Lastly, the processing conditions employed during the production of steel billets can impact their magnetic properties. Variables such as temperature, cooling rate, and mechanical deformation can all affect the microstructure and consequently, the magnetic behavior. For instance, rapid cooling can result in finer grain sizes and improved magnetic properties. Similarly, mechanical deformation can induce magnetic anisotropy, aligning the steel billet in a specific direction and enhancing its magnetic orientation. In conclusion, the magnetic properties of steel billets are primarily influenced by their composition, microstructure, and processing conditions. By effectively managing these factors, manufacturers can customize the magnetic properties of steel billets to meet the specific requirements of various applications, including electrical transformers, motors, and magnetic sensors.
Q: How do steel billets contribute to the manufacturing of household appliances?
Steel billets are an essential raw material in the manufacturing of household appliances as they serve as the base material for various components. These billets are shaped and processed through cutting, forging, or rolling techniques to create the required parts and structures of appliances such as refrigerator doors, washing machine drums, or oven racks. The durability, strength, and malleability of steel billets make them ideal for forming the sturdy and reliable components needed for household appliances.
Q: What is the role of steel billets in the construction industry?
Steel billets play a crucial role in the construction industry as they serve as the primary raw material for the production of various steel products used in construction projects. These billets are semi-finished steel forms that are hot-rolled or forged into different shapes and sizes, such as bars, rods, beams, and wire. The main function of steel billets is to provide the necessary strength, durability, and structural integrity to buildings, bridges, and other infrastructure. They are used in the construction of foundations, columns, beams, and other load-bearing structures, where their high tensile strength and resistance to external forces are essential. Furthermore, steel billets are widely used in reinforcement applications. Reinforcing steel bars, commonly known as rebars, are made from billets and are embedded within concrete structures to enhance their strength and resistance to tension. These rebars are critical in preventing cracks and failures in concrete structures, ensuring their long-term stability and safety. Steel billets also find application in the manufacturing of various construction components, such as pipes, tubes, and wires. These components are used for plumbing, electrical wiring, and other utility installations in buildings and infrastructure projects. In summary, steel billets are a fundamental raw material in the construction industry. Their versatility, strength, and durability make them indispensable for creating sturdy and reliable structures, reinforcing concrete elements, and manufacturing essential construction components.
Q: Can steel billets be used in the production of consumer electronics?
No, steel billets are primarily used in the production of construction materials and machinery, rather than consumer electronics which typically require more specialized materials such as semiconductors, plastics, and alloys.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords