• Square Steel Billet Q235 3SP Grade Prime Quality 3# System 1
  • Square Steel Billet Q235 3SP Grade Prime Quality 3# System 2
  • Square Steel Billet Q235 3SP Grade Prime Quality 3# System 3
  • Square Steel Billet Q235 3SP Grade Prime Quality 3# System 4
  • Square Steel Billet Q235 3SP Grade Prime Quality 3# System 5
  • Square Steel Billet Q235 3SP Grade Prime Quality 3# System 6
Square Steel Billet Q235 3SP Grade Prime Quality 3#

Square Steel Billet Q235 3SP Grade Prime Quality 3#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 3SP Grade Prime Quality 3#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 3SP Grade Prime Quality 3#

Main Feature Square Steel Billet Q235 3SP Grade Prime Quality 3#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 3SP Grade Prime Quality 3#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 3SP Grade Prime Quality 3#


Specifications of Square Steel Billet Q235 3SP Grade Prime Quality 3#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 3SP Grade Prime Quality 3#

FAQ of Square Steel Billet Q235 3SP Grade Prime Quality 3#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q: How are steel billets used in the manufacturing of tools and equipment?
Steel billets are used in the manufacturing of tools and equipment as they serve as the raw material for shaping and forming various metal products. These billets are heated, forged, and machined to create different components such as shafts, gears, fasteners, and cutting tools. The high strength and durability of steel make it an ideal choice for manufacturing tools and equipment that require strength, precision, and resistance to wear and tear.
Q: Can steel billets be used in the manufacturing of machinery?
Yes, steel billets can be used in the manufacturing of machinery. Steel billets are semi-finished metal products that are typically hot rolled or forged into various shapes, including bars, rods, or sheets. These billets serve as the raw material for manufacturing machinery components such as gears, shafts, bearings, and structural frames. The use of steel billets in machinery manufacturing offers several advantages. Steel is known for its exceptional strength, durability, and resistance to wear, making it a suitable material choice for heavy-duty applications. Additionally, steel can be easily machined, welded, and formed into complex shapes, allowing for the production of intricate machinery parts. Moreover, steel's high melting point and thermal conductivity make it ideal for applications that involve high temperatures or require heat transfer. Overall, steel billets are widely used in machinery manufacturing due to their excellent mechanical properties, versatility, and reliability.
Q: What are the different types of shearing machines used for steel billets?
Steel billets can be cut using various types of shearing machines. These machines are designed for precise and efficient cutting operations in the steel industry. Here are some examples of the different shearing machines used for steel billets: 1. Guillotine Shears: Guillotine shears are widely used for cutting steel billets. They have a fixed bed and a vertically moving blade that cuts through the material. Guillotine shears offer high cutting accuracy and can easily handle thick billets. 2. Flying Shears: Also known as rotary shears, flying shears are another popular option. They have a circular blade that rotates and cuts the billet as it moves along the conveyor. Flying shears are known for their high cutting speed and ability to handle large volumes. 3. Cold Shears: Cold shears are designed to cut steel billets at lower temperatures to prevent heat damage. They use hydraulic or mechanical systems to apply force and cut through the billet. Cold shears are commonly used in industries where cooling the billets is necessary before further processing. 4. Rotary Shears: Rotary shears are used to cut steel billets into smaller sections. They have multiple blades mounted on a rotating drum, which cuts the billet into desired lengths. Rotary shears offer high cutting efficiency and are often used when small-sized billets are required. 5. Hydraulic Shears: Hydraulic shears are versatile machines that can cut various materials, including steel billets. They use hydraulic power to provide the cutting force. Hydraulic shears have a high cutting speed and can efficiently handle large-sized billets. Each type of shearing machine mentioned above has its own advantages and is suitable for specific applications in the steel industry. The choice of shearing machine depends on factors such as billet size and thickness, required cutting accuracy, production volume, and other specific requirements of the steel processing operation.
Q: What are the main challenges in steel billet production?
Manufacturers and producers face several key challenges in the production of steel billets. One of the primary hurdles is the need to guarantee a consistent and uniform quality for the billets. These semi-finished products are further processed into various steel items, and any irregularities or variations in their quality can lead to defects or failures in the final products. Consequently, it is crucial to maintain strict quality control measures throughout the production process. Another significant challenge revolves around optimizing the production process to meet desired quantity and quality targets while minimizing costs. This entails efficiently utilizing resources such as raw materials, energy, and labor. Additionally, striking a balance between production speed and quality can be challenging, as increasing the speed may result in reduced quality or increased defects. Ensuring the safety of workers and the environment also poses a major challenge in steel billet production. The production process involves heavy machinery, high temperatures, and potentially hazardous materials, which can jeopardize the health and safety of workers. To address this, it is imperative to implement proper safety protocols, provide training, and ensure compliance with regulatory standards. Furthermore, meeting the constantly growing demand for steel billets presents a challenge for producers. Market demand fluctuates, necessitating the ability to adjust production capacity accordingly. This requires flexibility in production planning and efficient inventory management to avoid overproduction or stock shortages. Lastly, technological advancements and innovations within the steel industry bring both challenges and opportunities. Incorporating new technologies, such as automation, artificial intelligence, and data analytics, can enhance efficiency and productivity. However, integrating these technologies into existing production processes can be complex and often requires substantial investments and expertise. In summary, the primary challenges in steel billet production include maintaining consistent quality, optimizing production processes, ensuring safety, meeting market demand, and adapting to technological advancements. Overcoming these challenges necessitates continuous improvement, innovation, and a proactive approach to remain competitive in the steel industry.
Q: Can steel billets be used in the production of agricultural equipment?
Yes, steel billets can be used in the production of agricultural equipment. Steel billets are versatile and strong, making them suitable for manufacturing various components of agricultural machinery such as plows, harvesters, and tractors. The use of steel billets ensures durability, reliability, and resistance to corrosion, making them a preferred material choice in the agricultural industry.
Q: How are steel billets cut into desired lengths?
Various cutting techniques are commonly used to cut steel billets into desired lengths. One of the most frequently employed methods is saw cutting, where a high-speed circular saw with a carbide or diamond-tipped blade is utilized. By securing the billet in place, the saw blade is brought down to create the required length. Another method is torch cutting, which involves the use of an oxy-fuel torch. This torch produces a high-temperature flame directed onto the billet, causing it to melt and be cut through. Torch cutting is preferred for larger and thicker steel billets, as it allows for greater flexibility in cutting irregular shapes or angles. Moreover, plasma cutting is another technique utilized for cutting steel billets. It employs a plasma torch that generates an electrically conductive plasma arc. This arc melts the steel and blows away the molten metal, resulting in a precise and clean cut. Plasma cutting is particularly beneficial for thicker steel billets or intricate shapes and designs. In summary, the choice of cutting technique for steel billets depends on factors such as size, thickness, precision, accuracy, and specific requirements of the end product.
Q: What are the different surface treatments for improved weldability in steel billets?
There are several surface treatments that can be used to improve weldability in steel billets. These include processes such as pickling, grinding, and shot blasting. Pickling involves removing any surface impurities or oxides through the use of acid solutions. Grinding helps to smooth out any rough or uneven surfaces, ensuring better contact and fusion during the welding process. Shot blasting uses high-speed projectiles to clean the surface and create a rough texture, which enhances the adhesion of the weld. These treatments help to remove contaminants and improve the overall quality and weldability of the steel billets.
Q: How does the quality of steel billets affect the quality of the final product?
The quality of steel billets significantly impacts the quality of the final product. The composition, purity, and uniformity of the steel billets directly influence the structural integrity, strength, and performance of the finished steel product. Imperfections or impurities in the billets can lead to defects, such as cracks or weak spots, in the final product. Therefore, ensuring high-quality steel billets is crucial in producing a superior final steel product.
Q: How are steel billets used in the production of structural components?
Steel billets are used in the production of structural components by being heated and molded into desired shapes such as beams, columns, and plates. These billets serve as the starting material, which is then further processed through rolling, forging, or extrusion to create strong and durable structural components used in various industries such as construction, automotive, and aerospace.
Q: What are the different types of steel billet heat treatment processes?
There are several types of steel billet heat treatment processes that are commonly used in the industry. These processes aim to improve the mechanical properties of the steel billets, such as strength, hardness, toughness, and ductility, to meet specific application requirements. Some of the different types of steel billet heat treatment processes include: 1. Annealing: This process involves heating the steel billet to a specific temperature and then slowly cooling it to room temperature. Annealing helps to relieve internal stresses and improve the machinability and ductility of the steel. 2. Normalizing: In this process, the steel billet is heated to a temperature above its critical point and then allowed to cool in still air. Normalizing refines the grain structure of the steel, resulting in improved mechanical properties and uniformity. 3. Quenching: Quenching involves rapidly cooling the steel billet from a high temperature by immersing it in a quenching medium, such as water, oil, or polymer. This process creates a hardened structure in the steel, increasing its hardness and strength. 4. Tempering: After quenching, the steel billet is heated to a lower temperature and then cooled slowly. Tempering reduces the brittleness caused by quenching and improves the toughness, ductility, and machinability of the steel. 5. Austempering: This process involves quenching the steel billet to a temperature just above the martensite transformation range and holding it at that temperature until it transforms to bainite. Austempering results in a structure with improved strength, toughness, and wear resistance. 6. Martempering: Martempering is similar to austempering, but the steel billet is quenched into a medium at a temperature slightly above the martensite transformation range and then held until it cools to below that temperature. This process produces a structure with improved toughness and reduced distortion compared to conventional quenching. These are just a few of the many heat treatment processes used for steel billets. The choice of process depends on the desired mechanical properties and application requirements of the steel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords