Square Steel Billet Q235 3SP Grade Prime Quality 9#
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t
- Supply Capability:
- 50000 m.t/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description of Square Steel Billet Q235 3SP Grade Prime Quality 9#
M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products.
CRS Billets are used for rolling of CRS TMT Re-Bars.
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.
Main Feature Square Steel Billet Q235 3SP Grade Prime Quality 9#
Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine--- cutting into pieces---checking quanlity
Applications of Square Steel Billet Q235 3SP Grade Prime Quality 9#
Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.
Specifications of Square Steel Billet Q235 3SP Grade Prime Quality 9#
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
Q195 | ≤0.12 | ≤0.50 | ≤0.040 | ≤0.035 | ≤0.30 |
Q235 | ≤0.20 | ≤1.40 | ≤0.045 | ≤0.045 | ≤0.35 |
Q275 | ≤0.22 | ≤1.50 | ≤0.045 | ≤0.045 | ≤0.35 |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
3SP | 0.14-0.22 | 0.40-0.85 | ≤ 0.050 | ≤ 0.040 | 0.05-0.15 |
5SP | 0.28-0.37 | 0.50-1.00 | ≤ 0.050 | ≤ 0.040 | 0.15-0.30 |
FAQ of Square Steel Billet Q235 3SP Grade Prime Quality 9#
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q: How is the quality of steel billets ensured during production?
- The quality of steel billets is ensured during production through various measures such as regular testing and inspection. This includes conducting chemical analysis to ensure the correct composition, as well as mechanical testing to check the strength and durability of the billets. Additionally, visual inspections are carried out to identify any surface defects or imperfections. Strict quality control measures are implemented at every stage of the production process to ensure that the steel billets meet the required standards and specifications.
- Q: Billet heating furnace prices?
- Look at the video case, you can consult the advisory.
- Q: The role of carbon content in steels
- 2., the formation of carbide structure, can improve the hardness and wear resistance of steel, such as cementite, or Fe3C, that is, carbide organizationTherefore, the higher the carbon content in carbon steel, the higher the strength and hardness of the steel, but the plasticity and toughness will also be reduced. On the contrary, the lower the carbon content, the higher the plasticity and toughness of the steel, and its strength and hardness will also decrease
- Q: What are the different methods of steel billet surface treatment?
- The industry commonly utilizes several methods for steel billet surface treatment, aiming to enhance properties such as corrosion resistance, hardness, and aesthetics. Some of the most widely used methods include: 1. Pickling and Passivation: By utilizing acid solutions, impurities and oxide layers are removed from the steel surface. Passivation follows pickling to create a protective layer against future corrosion. 2. Shot Blasting: This mechanical treatment involves bombarding the billet surface with high-speed steel shots or grits, effectively eliminating scale, rust, and contaminants to achieve a clean and uniform surface. 3. Hot-Dip Galvanizing: Steel billets are immersed in molten zinc, which forms a protective coating on the surface. This method provides exceptional corrosion protection, making it suitable for outdoor applications. 4. Electroplating: A thin layer of metal, such as chrome or nickel, is deposited onto the steel surface using an electric current. This process enhances appearance, corrosion resistance, and wear resistance. 5. Powder Coating: A dry powder is applied to the steel surface and then cured through heat, resulting in a durable and visually appealing finish. This method is popular for aesthetic purposes. 6. Painting: The steel surface is cleaned, primed, and applied with a suitable paint system. This method enhances appearance and provides protection against corrosion and environmental factors. 7. Nitriding: Nitrogen diffuses into the steel surface through a heat treatment process. This method improves billet hardness, wear resistance, and fatigue strength. These are just a few of the available methods for steel billet surface treatment. The choice of method depends on specific application requirements, desired properties, and budget considerations.
- Q: Our caster is square billet! 150X500! That is, every time we open the head, there is slag inclusion. And pores! Yes, the first 3 meters! There's no more left behind! How did it happen, please?! We have a refinery and electromagnetic stirring! Give me a hand!
- the only way to avoid pinhole of slag situation.1, after foaming, a large amount of gas and residue are produced, which is the main source of porosity and slag inclusion in the cast steel.2, steel casting pouring system or ingate structure is not reasonable, easy to make the gas and residue involved in the liquid metal, the formation of porosity and slag.3, pouring temperature is too low, can not make the cast steel parts of the gas and residue fully excluded, floating up to the top of the casting, but also easy to produce porosity and slag inclusion.4, in some parts of the cast steel parts, when the permeability of the paint is very low, due to the role of gas back pressure, it is easy to make the gasification gas wrapped in the epidermis, forming a package of gas".
- Q: What are the different methods of steel billet surface finishing?
- There are several methods of steel billet surface finishing, including shot blasting, grinding, and sanding. Shot blasting involves propelling small metal or abrasive particles at high speeds to remove surface impurities and create a smooth finish. Grinding uses abrasive wheels or belts to remove material and achieve the desired surface texture. Sanding involves using sandpaper or sanding pads to manually rub the surface and achieve a polished finish. Other methods may also include acid pickling or chemical treatments to remove scale or oxide layers.
- Q: How are steel billets used in the manufacturing of agricultural machinery?
- Steel billets are often used as a starting material in the manufacturing process of agricultural machinery. They are typically shaped and transformed through various machining and forging techniques to create different components like gears, shafts, brackets, and frames. These components are then assembled to build the necessary machinery for farming operations, such as tractors, tillers, harvesters, and irrigation systems. The use of steel billets ensures durability, strength, and reliability in agricultural machinery, making them capable of withstanding the demanding conditions and heavy workloads often encountered in the agricultural industry.
- Q: What are the different surface treatments for improved surface hardness in steel billets?
- There are several different surface treatments that can be used to improve the surface hardness of steel billets. These treatments are designed to enhance the wear resistance and durability of the steel, making it suitable for various industrial applications. One common surface treatment method is through carburizing. Carburizing involves introducing carbon into the surface of the steel billet by heating it in a carbon-rich atmosphere, such as methane or propane. This process forms a hard layer of high-carbon steel on the surface, known as a case, which significantly increases the surface hardness of the billet. Another surface treatment technique is nitriding. Nitriding is a process that involves exposing the steel billet to a nitrogen-rich atmosphere at elevated temperatures. This causes nitrogen atoms to diffuse into the surface of the steel, forming a hard nitride layer. Nitriding not only improves surface hardness but also enhances the resistance to wear and corrosion. A third surface treatment method is induction hardening. Induction hardening utilizes the principle of electromagnetic induction to heat the surface of the steel billet rapidly. Once the desired temperature is reached, the billet is quenched, resulting in a hardened surface layer. This treatment is particularly effective for localized hardening of specific areas on the steel billet. Additionally, shot peening is another surface treatment technique used to improve surface hardness. Shot peening involves bombarding the surface of the steel billet with small, high-velocity steel shots. This process induces compressive stresses in the surface layer, thereby increasing the hardness and fatigue resistance of the billet. Each of these surface treatments has its advantages and disadvantages, and the choice of treatment method depends on the specific requirements and intended use of the steel billets. By selecting an appropriate surface treatment, manufacturers can ensure that steel billets possess the necessary hardness and durability for their intended applications.
- Q: Are steel billets subject to any regulations or certifications?
- Yes, steel billets are subject to various regulations and certifications. These regulations and certifications ensure that the steel billets meet specific quality standards, safety requirements, and environmental regulations. Some common certifications include ISO 9001 for quality management systems, ISO 14001 for environmental management systems, and certifications from industry-specific organizations like the American Society for Testing and Materials (ASTM) or the International Organization for Standardization (ISO). Additionally, steel billets may need to comply with specific regulations in the country or region where they are produced or used, such as building codes or product safety regulations.
- Q: How are steel billets straightened after rolling or forging?
- After the rolling or forging process, steel billets may have irregularities or bends. To straighten them, various methods can be employed depending on the size and shape of the billets. One common method is known as rotary straightening. In this process, the billets are passed through a series of rotating rolls or wheels that exert pressure on the material, gradually straightening it out. The rolls are usually positioned at different angles to ensure an even distribution of force across the billet. This method is often used for smaller billets or those with slight bends. For larger and thicker billets, hydraulic straightening is often employed. Hydraulic presses or jacks are used to apply controlled pressure at specific points along the length of the billet. By adjusting the pressure at different points, the billet is gradually straightened. This method is more suitable for heavier and more severely bent billets. In some cases, heat can also be used to aid in the straightening process. Heat straightening involves heating the bent section of the billet to a specific temperature and then applying pressure to straighten it while it is still hot. This method is particularly effective for billets with significant bends or twists. It is important to note that the straightening process requires careful control and monitoring to prevent over-straightening or excessive stress on the material. Skilled operators and advanced equipment are necessary to ensure the billets are straightened effectively and within the desired tolerances.
Send your message to us
Square Steel Billet Q235 3SP Grade Prime Quality 9#
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t
- Supply Capability:
- 50000 m.t/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords