• Hot Rolled Square Bar with High Quality of Grade Q235,Q275 System 1
  • Hot Rolled Square Bar with High Quality of Grade Q235,Q275 System 2
  • Hot Rolled Square Bar with High Quality of Grade Q235,Q275 System 3
  • Hot Rolled Square Bar with High Quality of Grade Q235,Q275 System 4
  • Hot Rolled Square Bar with High Quality of Grade Q235,Q275 System 5
Hot Rolled Square Bar with High Quality of Grade Q235,Q275

Hot Rolled Square Bar with High Quality of Grade Q235,Q275

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
3000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Hot Rolled Square Bar with High Quality of Grade Q235,Q275 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Square Bar with High Quality of Grade Q235,Q275 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Hot Rolled Square Bar with High Quality of Grade Q235,Q275 are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 Product Description:

-Standard: Q235 Q275

--Chemical Composition:

Standard

Grade

Element (%)

GB

Q235/275

C

Mn

S

P

Si

0.06~0.12

0.25~0.50

≤0.050

≤0.045

≤0.30

 Measures of HR Square Bar (small measures):

 

(Section of HR Square Bar)

 

-Length of a side and Theoretical weight of Square Bar.

Length of a side(mm)

Theoretical weight(kg/m)

Length of a side(mm)

Theoretical weight(kg/m)

7

0.385

22

3.80

8

0.502

24

4.52

9

0.636

25

4.91

10

0.785

26

5.30

11

0.950

28

6.15

12

1.13

30

7.06

13

1.33

32

8.04

14

1.54

34

9.07

15

1.77

36

10.17

16

2.01

38

11.24

17

2.27

40

12.56

18

2.54

42

13.85

19

2.82

45

15.90

20

3.14

48

18.09

21

3.46

50

19.63

 

 

Notes:

1, The theoretical weights in the list, base on the density of 7.85 g/cm3.

2, Formula for theoretical weight of Square bar: (length of a side)2 * 0.00785

3, The numbers with *mean that they are not regular or we don’t offer them.

 

-Regular length of Square Bar:

Steel

Length of a side (mm)

Length of steel (m)

Normal steel

< 25

4~10

> 25

3~9

Steel of high quality

All measure

2~6

Tool steel >75

1~6

 

 Usage/Applications of HR Square Bar:

-The Square Bar is normally used as structure steel.

-Row material for other structure steel like steel angles, channels, I-beams, H-beams, etc…

 

Packaging & Delivery of HR Square Bar:

-Packing Detail: The products can be packed in bundles by steel wires.

-Marks: We make tag marks and color marks. The tag marks with white background and red company logo will be tied up to each bundle of the products. The information is usually including basic information of products and company and other information requested by customers. As for color marks, we will paint both ends of bundles to make sure that it will be more convenient for customers to distinguish them from other products.

-Delivery Detail: 30~45 working days after receive buyer’s T.T. or L/C.

 

Transportation:

-The products can be delivered by bulk vessel or by container. As for container, products with the length of 6m will be loaded in 20’ container, with 9m or 12m, in 40’ container.

-The maximum quantity of loading of container is 25 tons.

-The products are usually transported to the nearest port from the production place.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 Image:

 

 

 

Q: What is the difference between continuous casting billet and cast billet?
Mainly to see the process, general casting efficiency is low, but the quality is acceptable, with low level (open casting billet) has great advantages in surface quality; but with high-grade continuous casting line (full protection casting, electromagnetic stirring, liquid stopper control) compared both have a big difference in the crystal, oxidation, surface quality.
Q: How are steel billets rolled into shape?
Steel billets are rolled into shape through a process called hot rolling. This process involves heating the steel billet to high temperatures, typically above 1,000 degrees Celsius, to make it malleable and easier to shape. The heated billet is then passed through a series of rolling mills, which consist of a pair of cylindrical rollers that rotate in opposite directions. As the billet passes through the rollers, it is gradually compressed and elongated, resulting in a desired shape and size. The rollers apply high pressure on the billet, effectively reducing its thickness and increasing its length. This continuous rolling process allows for precise control over the shape and dimensions of the steel product. To ensure smooth rolling and prevent the billet from sticking to the rollers, lubricants are often applied. These lubricants also help in dissipating the heat generated during the rolling process. Depending on the desired final product, the steel billet may undergo multiple passes through the rolling mills to achieve the desired shape and dimensions. After the initial rough rolling, the steel may be further shaped and refined through additional rolling stages. Once the desired shape is achieved, the steel is then allowed to cool and solidify. This cooling process is crucial to ensure the final product has the desired mechanical properties and structural integrity. Overall, the hot rolling process of steel billets is a crucial step in the production of various steel products. It allows for the efficient shaping and forming of the billets into different shapes, sizes, and profiles, meeting the specific requirements of different industries such as construction, automotive, and manufacturing.
Q: What are the main challenges in steel billet production?
There are several main challenges in steel billet production that manufacturers and producers face. One of the key challenges is ensuring consistent and uniform quality of the billets. Steel billets are the semi-finished products that are further processed into various steel products, and any inconsistency or variation in their quality can lead to defects or failures in the final products. Therefore, maintaining strict quality control measures throughout the production process is crucial. Another significant challenge is optimizing the production process to meet the desired quantity and quality targets while minimizing costs. This involves efficient utilization of resources such as raw materials, energy, and labor. Additionally, maintaining a balance between the production speed and quality can be challenging as increasing the speed may lead to reduced quality or increased defects. Ensuring the safety of workers and the environment is also a major challenge in steel billet production. The production process involves heavy machinery, high temperatures, and potentially hazardous materials, which can pose risks to the workers' health and safety. Implementing proper safety protocols, providing training, and ensuring compliance with regulatory standards are essential to address these challenges. Furthermore, meeting the ever-increasing demand for steel billets is a challenge for producers. The market demand fluctuates, and manufacturers need to be able to adjust their production capacity accordingly. This requires flexibility in production planning and efficient inventory management to avoid overproduction or stock shortages. Lastly, technological advancements and innovations in the steel industry pose both challenges and opportunities. Adopting new technologies, such as automation, artificial intelligence, and data analytics, can improve efficiency and productivity. However, incorporating these technologies into existing production processes can be complex and require significant investments and expertise. In summary, the main challenges in steel billet production include maintaining consistent quality, optimizing production processes, ensuring safety, meeting market demand, and adapting to technological advancements. Overcoming these challenges requires continuous improvement, innovation, and a proactive approach to stay competitive in the steel industry.
Q: What is the role of steel billets in the manufacturing of pressure vessels?
The manufacturing of pressure vessels heavily relies on steel billets, which have a crucial role to play. Pressure vessels, designed to contain fluids or gases at higher pressures than atmospheric pressure, find applications across industries like oil and gas, chemical, pharmaceutical, and more. Steel billets serve as the raw material for constructing pressure vessels, forming a significant part of the manufacturing process. These semi-finished products are obtained through continuous casting or hot rolling of steel ingots and have a rectangular or square cross-section. Typically, they are made from carbon steel or alloy steel. Steel billets possess key properties that make them ideal for pressure vessel manufacturing. Their excellent strength and toughness allow them to withstand the high internal pressure exerted by fluids or gases, ensuring the integrity and safety of the vessel. Another important property of steel billets is their good weldability. This is crucial for fabricating pressure vessels as welding is a common joining technique. The weld joints must have comparable strength to the base material, and steel billets allow for strong and reliable welds during the fabrication process. In addition, steel billets can be easily formed and shaped into the desired size and dimensions for pressure vessels. They can be forged, rolled, or extruded to create various components like cylindrical bodies, heads, nozzles, and flanges. This versatility allows for customization based on specific pressure vessel requirements. Moreover, steel billets are known for their corrosion resistance, which is vital for pressure vessels in contact with corrosive fluids or gases. The selection of the appropriate steel grade for the billets ensures the vessel can withstand the corrosive environment and maintain its integrity over time. In conclusion, steel billets are indispensable in pressure vessel manufacturing as they provide the necessary raw material with properties required to withstand high-pressure conditions. Their strength, weldability, formability, and corrosion resistance make them an excellent choice for constructing reliable and durable pressure vessels used across various industries.
Q: What are the factors affecting the price of steel billets?
There are several factors that can affect the price of steel billets. Some of the key factors include the demand and supply dynamics in the market, fluctuations in raw material prices (such as iron ore and coal), changes in energy costs, global economic conditions, geopolitical events, government policies and regulations, and technological advancements in the steel industry. Additionally, factors like currency exchange rates and transportation costs can also impact the price of steel billets.
Q: What are the different types of defects in steel billets?
There are several types of defects that can occur in steel billets, which are essentially semi-finished steel products that are typically used as raw materials for various manufacturing processes. These defects can arise during the production or handling of billets and can affect their mechanical properties, structural integrity, and overall quality. Some common types of defects found in steel billets include: 1. Surface defects: These defects are typically visible on the outer surface of the billet and can include scratches, cracks, pits, or scale. Surface defects can occur due to improper handling, storage, or transportation of the billets, or as a result of poor manufacturing processes. 2. Internal defects: Also known as sub-surface defects, these occur within the cross-section of the billet and are not visible to the naked eye. Internal defects can include blowholes, inclusions, segregations, or voids. These defects can be a result of impurities in the raw materials, improper casting or solidification processes, or inadequate quality control measures. 3. Dimensional defects: These defects refer to deviations in the dimensions of the billet from the specified requirements. This can include variations in length, width, or thickness beyond the acceptable tolerances. Dimensional defects can be caused by factors such as improper cutting, rolling, or cooling processes during billet production. 4. Chemical composition defects: These defects occur when the steel billet does not meet the required chemical composition specifications. This could be due to impurities in the raw materials, improper mixing or alloying processes, or inadequate quality control during the production phase. 5. Mechanical defects: These defects affect the mechanical properties of the steel billet, such as its strength, toughness, or ductility. Mechanical defects can result from improper heat treatment, quenching, or tempering processes, or from inadequate quality control during the manufacturing process. It is important to detect and minimize these defects as they can adversely affect the performance and reliability of the final steel products that are made from these billets. Quality control measures, such as regular inspection and testing, can help identify and rectify any defects in steel billets, ensuring the production of high-quality finished products.
Q: What are the main safety precautions in handling steel billets?
When handling steel billets, there are several important safety precautions that should be followed to minimize the risk of accidents and injuries. 1. Personal Protective Equipment (PPE): It is vital to wear appropriate PPE, such as steel-toed boots, protective gloves, safety glasses, and a hard hat. This gear provides essential protection against potential hazards such as falling objects, sharp edges, and splashes. 2. Lifting and Handling Techniques: Proper lifting techniques should be used to avoid strains and injuries. It is essential to bend the knees and lift with the legs, keeping the back straight. Using mechanical aids like cranes or forklifts can also help reduce the physical strain of lifting heavy steel billets. 3. Secure Storage and Stacking: Steel billets should be stored securely to prevent them from falling or rolling over. They should be stacked in a stable manner, ensuring that the bottom layer is strong enough to support the weight. Using racks, pallets, or other appropriate storage systems can help maintain stability. 4. Proper Machinery Operation: If machinery or equipment is used to transport or manipulate steel billets, it is crucial to follow the manufacturer's instructions and operate the machinery safely. This includes regular maintenance checks, ensuring that safety guards are in place, and using equipment within its specified capacity. 5. Hazard Communication: Clear signage and labels should be used to indicate the presence of steel billets or any potential hazards associated with their handling. Workers should be trained to recognize and understand these signs and be aware of the risks involved. 6. Fire Prevention: Steel billets can pose a fire hazard if they come into contact with flammable materials or are exposed to high temperatures. Therefore, it is important to keep the work area clean and free from combustible substances. Additionally, fire extinguishers should be readily available, and workers should be trained in their proper usage. 7. Training and Education: Proper training and education programs should be implemented to ensure that all workers are familiar with the potential hazards of handling steel billets and know how to mitigate them. This training should cover safety procedures, emergency response protocols, and the correct use of personal protective equipment. By following these safety precautions, the risk of accidents and injuries when handling steel billets can be significantly reduced, creating a safer working environment for all personnel involved.
Q: How are steel billets used in the production of railway parts?
Steel billets are used in the production of railway parts by being heated and shaped into various forms such as rails, wheels, and axles. These billets serve as the starting material that is forged or rolled into the desired shape to meet the specific requirements of railway components, ensuring durability, strength, and reliability for safe and efficient train operation.
Q: How are steel billets used in the production of marine equipment?
Steel billets are used in the production of marine equipment as they are the starting point for various manufacturing processes. They are heated, shaped, and machined into different components such as hulls, propellers, and structural supports, which are then assembled to create the final marine equipment.
Q: How to calculate the cost price of billet?
That depends on what kind of material you are producing steel billet, and are generally the city's iron ore came.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords