• Square Steel Billet Q235 3SP Grade Prime Quality 12# System 1
  • Square Steel Billet Q235 3SP Grade Prime Quality 12# System 2
  • Square Steel Billet Q235 3SP Grade Prime Quality 12# System 3
  • Square Steel Billet Q235 3SP Grade Prime Quality 12# System 4
  • Square Steel Billet Q235 3SP Grade Prime Quality 12# System 5
  • Square Steel Billet Q235 3SP Grade Prime Quality 12# System 6
Square Steel Billet Q235 3SP Grade Prime Quality 12#

Square Steel Billet Q235 3SP Grade Prime Quality 12#

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t
Supply Capability:
50000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Square Steel Billet Q235 3SP Grade Prime Quality 12#

M. S. Billets are used for rolling of TMT Re-Bars of Fe415 and Fe500 Grade and various other structural steel products. 
CRS Billets are used for rolling of CRS TMT Re-Bars. 
Special Alloy Billets are used for rolling of any special grade TMT Re-Bars like Earthquake resistant TMT Re-Bars and for special grade structural steel products.

Square Steel Billet Q235 3SP Grade Prime Quality 12#

Main Feature Square Steel Billet Q235 3SP Grade Prime Quality 12#

Raw elements(C,Fe,Ni,Mn,Cr,Cu.)---Smelted ingots by AOD finery---hot rolled into black suface---pickling in acid liquid---cold drawn----polished by automatically machine---  cutting into pieces---checking quanlity


Applications of Square Steel Billet Q235 3SP Grade Prime Quality 12#

Widely Used in the areas such as Stainless Steel Fasteners, Chains, Kitchen and Sanitary wares, Furniture handles, Handrails, Electroplating and Electrolyzing pendants, Foods, Electron, Petroleum, Construction and Decoration, etc. Products have a high strength after cold-working. Electronic products parts, Medical appliance, Springs, Bus Inside and Outside packaging and building, Street Lamp Posts, etc. Decoration materials and Outdoor Publicity Billboard. Used for the products which have the Anti-Stress Corrosion requirement. Electron Products, Table-wares, Bolts, Nuts, Screen Meshes, Cumbustors and so on.

Square Steel Billet Q235 3SP Grade Prime Quality 12#


Specifications of Square Steel Billet Q235 3SP Grade Prime Quality 12#

StandardC(%)Mn(%)S(%)P(%)Si(%)
Q195≤0.12≤0.50≤0.040≤0.035≤0.30
Q235≤0.20≤1.40≤0.045 ≤0.045≤0.35 
Q275≤0.22≤1.50≤0.045≤0.045≤0.35
20MnSi0.17-0.251.2-1.6≤ 0.050≤ 0.0500.40-0.80
3SP0.14-0.220.40-0.85≤ 0.050≤ 0.0400.05-0.15
5SP0.28-0.370.50-1.00≤ 0.050≤ 0.0400.15-0.30
 

Square Steel Billet Q235 3SP Grade Prime Quality 12#

FAQ of Square Steel Billet Q235 3SP Grade Prime Quality 12#

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


Q: Are there any international standards for steel billets?
Yes, there are international standards for steel billets. The most commonly recognized standards for steel billets include ASTM (American Society for Testing and Materials), BS (British Standards), and EN (European Standards). These standards ensure the quality, composition, and dimensions of steel billets, promoting consistency and compatibility in international trade and manufacturing processes.
Q: What are the major steel billet producing countries?
China, India, Russia, Japan, and the United States are the key countries in the production of steel billets. China stands out as the largest producer, responsible for more than half of global output. This dominance can be attributed to its booming steel industry, which has witnessed remarkable growth in recent decades. Following China, India emerges as the second-largest producer, with its steel sector expanding rapidly. Russia, on the other hand, boasts a robust steel industry and ranks third in terms of production. Despite a decline in recent years, Japan still holds significance in the steel billet market. Lastly, the United States contributes significantly to the production of steel billets, focusing particularly on high-quality specialty steel products. These countries play a critical role in meeting the worldwide demand for steel billets, which serve as essential raw materials across various industries, including construction, automotive, and infrastructure.
Q: Can steel billets be used for marine applications?
Indeed, the utilization of steel billets in marine applications is possible. Frequently, steel billets serve as a fundamental resource for diverse marine components and structures. Given their remarkable strength and durability, steel billets are ideal for marine applications necessitating resistance to corrosion, impact, and harsh environmental conditions. Ship hulls, propeller shafts, marine pipelines, offshore platforms, and other marine structures can all be manufactured using steel billets. Moreover, steel billets can undergo additional processing and shaping to meet precise specifications for marine applications.
Q: What is the role of steel billets in the manufacturing of agricultural machinery?
Steel billets play a crucial role in the manufacturing process of agricultural machinery. These billets are essentially semi-finished steel products that are typically cast into a rectangular shape. They serve as the raw material for various components and parts of agricultural machinery. The use of steel billets provides several advantages in the manufacturing of agricultural machinery. Firstly, steel is known for its exceptional strength and durability, making it an ideal material for heavy-duty machinery that is subjected to harsh operating conditions. Steel billets, being the starting point of the manufacturing process, ensure that the final products possess the necessary strength and durability to withstand the demands of agricultural activities. Moreover, steel billets offer versatility in design and fabrication. Agricultural machinery requires a wide range of components with different shapes and sizes, and steel billets can be easily molded and machined to meet these requirements. This flexibility allows manufacturers to produce complex parts that are essential for the efficient operation of agricultural machinery. Additionally, steel billets provide consistent and reliable quality. The manufacturing process of steel billets involves strict quality control measures to ensure uniformity and adherence to industry standards. This consistency in quality translates into reliable performance and longevity of the agricultural machinery, reducing the need for frequent repairs or replacements. Furthermore, steel billets have excellent resistance to corrosion and wear, which is crucial for agricultural machinery exposed to various environmental elements. The use of steel billets ensures that the final products can withstand exposure to moisture, chemicals, and abrasive materials commonly encountered in agricultural settings. In summary, steel billets are integral to the manufacturing of agricultural machinery due to their strength, durability, versatility, consistent quality, and resistance to corrosion and wear. By using steel billets as the raw material, manufacturers can produce agricultural machinery that meets the demanding requirements of the agricultural industry, ensuring reliable and efficient performance in various farming applications.
Q: How are steel billets used in the production of agricultural equipment?
Steel billets are an essential component in the production of agricultural equipment due to their versatility and durability. These billets are semi-finished steel products that are shaped into a solid rectangular form, making them ideal for various manufacturing processes. In the production of agricultural equipment, steel billets are typically used as the raw material for forging, casting, or rolling processes. Forging involves heating the billets to a specific temperature and then shaping them into the desired form using a hammer or press. This process is commonly used to create components such as plowshares, tiller blades, and harrow teeth, which require superior strength and resistance to wear and tear. Casting is another method used in agricultural equipment production, where molten steel is poured into a mold and left to solidify. Steel billets are melted and cast into intricate shapes, allowing manufacturers to create complex components like tractor engine blocks, combine harvester parts, or even agricultural machinery frames. The ability to cast steel billets into various shapes enables the production of customized equipment that meets specific requirements. Rolling is another technique that utilizes steel billets in the production of agricultural equipment. These billets are heated and then passed through a series of rollers to reduce their size and shape them into different profiles, such as bars, rods, or sheets. Rolled steel billets are commonly used in the manufacturing of components like axles, shafts, and brackets, which are crucial for the functionality of agricultural machinery. One of the key reasons steel billets are preferred in agricultural equipment production is their inherent strength and durability. The agricultural industry demands robust machinery that can withstand harsh environments, heavy loads, and repetitive use. Steel billets offer exceptional strength, allowing manufacturers to create equipment that can endure these demanding conditions. Additionally, steel billets can be further strengthened through heat treatment processes, such as quenching and tempering, to enhance their mechanical properties. In conclusion, steel billets play a vital role in the production of agricultural equipment. Their versatility and durability enable manufacturers to create components and machinery that can withstand the challenging conditions of the agricultural industry. Whether used in forging, casting, or rolling processes, steel billets provide the necessary strength and reliability required for efficient and long-lasting agricultural equipment.
Q: How are steel billets used in the production of transmission components?
Steel billets are used in the production of transmission components as they serve as the raw material that is shaped, machined, and formed into various parts such as gears, shafts, and casings. These billets are heated, forged, and then processed through cutting, grinding, and milling operations to create the desired shape and size for each component. The strength and durability of steel make it an ideal material for transmission components, ensuring reliable and efficient operation in vehicles and machinery.
Q: How are steel billets used in the production of sheet metal?
Steel billets are used in the production of sheet metal through a process known as rolling. Rolling is a technique that involves passing steel billets through a series of rollers to reduce their thickness and create a flat sheet. The first step in the process is to heat the steel billets to a specific temperature to make them more malleable. Once heated, the billets are then fed into a rolling mill, where they pass through a series of rollers that gradually decrease the thickness of the steel. As the billets are rolled, they are compressed and elongated, resulting in a thinner and longer piece of steel. This process is repeated multiple times, with each pass reducing the thickness of the steel sheet. Once the desired thickness is achieved, the sheet is cooled and cut into specific lengths. The final product is a flat sheet of sheet metal that can be further processed and used in various industries, such as construction, automotive, and manufacturing. Steel billets play a crucial role in the production of sheet metal as they provide the raw material from which the sheets are formed. Their malleability and ability to withstand the rolling process make them an ideal choice for creating thin and durable sheet metal.
Q: What are the main factors affecting the hardenability of steel billets?
The hardenability of steel billets, or the ability of a steel alloy to be hardened through heat treatment, is influenced by several main factors. These factors include the chemical composition of the steel, the cooling rate during quenching, and the grain size of the steel. Firstly, the chemical composition of the steel plays a crucial role in determining its hardenability. Elements such as carbon, manganese, and alloying elements like chromium, molybdenum, and nickel can significantly affect the hardenability. Higher carbon content increases the hardenability, as does the presence of certain alloying elements. These elements form carbides that enhance the formation of martensite, the hard and brittle phase that gives steel its hardness. The cooling rate during quenching is another critical factor affecting hardenability. Quenching involves rapidly cooling the heated steel billet, typically in a liquid medium such as water or oil. The cooling rate determines the transformation of the steel's microstructure. Faster cooling rates result in a higher degree of hardenability, as they promote the formation of martensite. Slower cooling rates, on the other hand, can lead to the formation of softer phases like ferrite or pearlite. Lastly, the grain size of the steel also influences its hardenability. A smaller grain size provides more nucleation sites for the formation of martensite, leading to improved hardenability. Grain refinement can be achieved through processes such as alloying, heat treatment, and controlled cooling. Additionally, the presence of non-metallic inclusions, which act as stress concentration sites, can also affect the hardenability by promoting crack initiation and propagation during quenching. In summary, the main factors affecting the hardenability of steel billets are the chemical composition of the steel, the cooling rate during quenching, and the grain size of the steel. Understanding these factors and their interplay is crucial for achieving the desired hardness and mechanical properties in steel billets during heat treatment processes.
Q: How do steel billets contribute to the overall energy efficiency of a structure?
Steel billets contribute to the overall energy efficiency of a structure in several ways. Firstly, steel is a highly durable and long-lasting material, meaning that structures built with steel billets have a longer lifespan. This reduces the need for frequent maintenance and repairs, which in turn lowers energy consumption and costs over time. Secondly, steel is an excellent conductor of heat and electricity. This property allows for efficient distribution of thermal energy throughout the structure, reducing the need for additional heating or cooling systems. Steel structures can effectively regulate internal temperature and minimize energy loss, resulting in improved energy efficiency. Furthermore, steel manufacturing processes have become increasingly energy-efficient over the years. Modern steel production techniques involve recycling scrap steel, using electric arc furnaces, and implementing advanced technologies to minimize energy consumption during the production of steel billets. This focus on energy efficiency in the manufacturing stage translates into reduced environmental impact and energy savings throughout the life cycle of the structure. Additionally, steel structures can be designed to maximize natural lighting and ventilation, reducing the reliance on artificial lighting and mechanical ventilation systems. By incorporating features such as large windows, skylights, and well-designed air circulation systems, steel structures can minimize the need for energy-consuming lighting fixtures and HVAC systems, further enhancing energy efficiency. In summary, steel billets contribute to the overall energy efficiency of a structure through their durability, thermal conductivity, and the energy-efficient manufacturing processes used to produce them. By choosing steel as a building material, structures can benefit from reduced maintenance needs, efficient temperature regulation, and minimized energy consumption, leading to long-term energy savings and a more sustainable built environment.
Q: How is a steel billet made?
A steel billet is made through a process called continuous casting. It involves pouring molten steel into a water-cooled mold, which solidifies the steel into a rectangular shape. The solidified steel is then cut to the desired length to form a steel billet.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords