• Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace System 1
  • Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace System 2
Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

 

1.Structure of  Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

 

Steel Billets Manufactured by Continue Casting is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube


2.Main Features of  Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace.

Steel Billets Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

      There are three shapes of the steel billets: square billet, slab, rectangular billet The Chinese billet, rectangular billet is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.

 

 

3.  Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace Images

 

Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

 

 

 

 

 

4.  Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace Specification

 Steel Billets Manufactured by Continue Casting  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Alloyed Steel Billets or Blooms Manufactured by Continue Casting Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

The causes of surface transverse crack and prevent method have?

 Transverse cracks in the slab vibration mark the surface of the inner arc wave trough, is usually not hidden, crack depth can be up to 7 mm, width is 0.2 mm.Cracks in the existing body of the mesh area.The cause of general is disorder caused by the continuous casting process control.Such as: vibration mark too deep, Al, N content in steel, prompting particle (A1N) in the grain boundary precipitates, induced transverse crack;Billet straightening within the range of brittleness temperature 700 ~ 900 ℃;Secondary cooling is too strong, and so on. Continuous casting process and some measures to prevent the transverse crack in general are: mold using high frequency small amplitude;With smooth and weak cooling, secondary cooling and make the slab surface temperature greater than 900 ℃;Mould liquid level is stable, and USES the good lubrication performance, low viscosity of protecting slag. In general, M - EMS has little effect on the transverse crack, but the end of the electromagnetic stirring (F - EMS) can make the slab surface temperature picks up, can make the transverse crack caused by vibration mark (small) in the next row, especially the air cooling zone, not force and continue to expand, especially for casting machine technology of straightening temperature may be lower than 900 ℃, more degradation effect


 

What is the advantage of the continue Casting steel billet comparing to the die casting steel billet?And how is the process?

Compared with die casting, continuous casting has the advantages of: 1. To simplify the Steel billet The production process 2. Improve the metal yield 3. Improve the quality of the billet 4. Reduces the steel worker's labor intensity 5. Save energy and reduce consumption

Steel billet is produced by the method of through three processes: It is through the steelmaking system of continuous casting equipment, directly by the molten steel pouring into billet; The second is the steelmaking system in the production of steel ingot casting billet through system of steel rolling rolling equipment or processing of steel semi-finished products; Three is the steelmaking system production of steel ingot by forging the semi-finished product processing equipment.

 

 

Q:How are steel billets used in the manufacturing of mining equipment?
Steel billets are indispensable in the production of mining equipment. They are essentially semi-finished steel products that are molded into specific shapes and sizes required for the equipment being manufactured. In the case of mining equipment, steel billets serve as the raw material for various parts like gears, shafts, and structural components. The billets are heated and then subjected to a process called forging. During this process, heavy machinery and high pressure shape and mold the billets into the desired form. The strength and durability of steel make it an ideal material for mining equipment due to the harsh conditions in which these machines operate. Steel billets possess excellent mechanical properties, including high tensile strength and resistance to wear and corrosion. These properties are critical for the equipment to endure heavy loads and abrasive environments encountered in mining operations. Once the steel billets are forged into the required shape, they undergo additional processes such as machining, heat treatment, and surface finishing. These processes ensure that the mining equipment meets the necessary performance criteria and can withstand the rigorous demands of mining operations. Overall, steel billets play a vital role in the manufacturing of mining equipment as they provide a strong and reliable foundation for various components. Their use guarantees that the equipment can endure the extreme conditions of mining operations, ultimately contributing to the efficiency, safety, and productivity of these essential industries.
Q:What are the specifications for tool steel billets used in the tooling industry?
Tool steel billets used in the tooling industry typically have specific specifications to ensure optimal performance and durability. These specifications include: 1. Composition: Tool steel billets are made from specific alloy compositions that provide high hardness, wear resistance, and toughness. Common elements found in tool steel include carbon, chromium, vanadium, molybdenum, and tungsten. 2. Hardness: Tool steel billets are heat-treated to achieve a desired hardness level, typically measured in Rockwell hardness (HRC). The hardness required depends on the specific application and the type of tool being produced. 3. Size and shape: Tool steel billets come in various sizes and shapes, such as rectangular or round bars, to cater to different tooling requirements. The dimensions of the billets are chosen based on the size and complexity of the tool being manufactured. 4. Surface finish: Tool steel billets should have a smooth and clean surface finish to ensure easy machining and minimize the risk of defects or imperfections in the final tooling product. 5. Tolerance: The billets should be manufactured with tight dimensional tolerances to ensure consistency during the machining and tooling processes. This helps in achieving precise tool dimensions and minimizing wastage. 6. Homogeneity: Tool steel billets should have uniform chemical composition and microstructure throughout to ensure consistent mechanical properties and performance of the final tooling products. 7. Heat treatment properties: The billets should have good heat treatment properties, including the ability to be hardened and tempered, to enhance their strength, toughness, and wear resistance. 8. Machinability: Tool steel billets should have good machinability to allow for efficient shaping and forming processes during tool manufacturing. This includes considerations for cutting forces, chip formation, and surface finish. It is important to note that the specific specifications for tool steel billets can vary depending on the application and the type of tool being produced. Manufacturers and tooling experts often work closely together to determine the most suitable tool steel specifications for each specific tooling requirement.
Q:How are steel billets used in the production of hydraulic components?
Steel billets are an essential raw material used in the production of hydraulic components. These billets, which are semi-finished forms of steel, serve as the starting point for manufacturing various hydraulic parts. To begin with, steel billets are heated to high temperatures to make them malleable. This process is known as hot rolling, and it allows the billets to be easily shaped and formed into the desired hydraulic component. The hot billets are then passed through a series of rollers to achieve the desired size and shape, such as bars, rods, or tubes. Once the steel billets have been shaped, they undergo further machining processes to create specific hydraulic components. For example, they may be cut, drilled, or threaded to form pistons, cylinders, valve bodies, or other essential parts used in hydraulic systems. The use of steel billets in hydraulic component production offers several advantages. Firstly, steel is known for its high strength and durability, making it an ideal material for hydraulic applications where components are subjected to high pressure and heavy loads. Additionally, steel's excellent corrosion resistance ensures the longevity of hydraulic components, even in harsh operating conditions. Furthermore, steel billets allow for precise dimensional control during the manufacturing process. This ensures that the hydraulic components meet the required specifications and can seamlessly integrate into hydraulic systems without any compromise in performance. In conclusion, steel billets play a crucial role in the production of hydraulic components. By starting with these semi-finished forms of steel, manufacturers can create high-quality, durable, and precisely engineered parts that are vital for the efficient operation of hydraulic systems.
Q:How are steel billets used in the production of pressure vessels?
Steel billets are commonly used in the production of pressure vessels due to their exceptional strength and durability. Pressure vessels, such as tanks or containers, are designed to store or transport fluids or gases at high pressures. To manufacture pressure vessels, steel billets are first heated and then subjected to a process called hot rolling. This process involves passing the billets through a series of rollers to shape them into the desired form. The hot rolling process not only gives the billets their final shape but also improves their mechanical properties, making them more suitable for withstanding high pressures. After hot rolling, the billets are further processed through various techniques such as forging, machining, and welding to create the required components of the pressure vessel. These components include the shell, heads, nozzles, and other fittings. Steel billets are preferred in pressure vessel production due to their high tensile strength and resistance to deformation. This ensures that the vessel can withstand the internal pressure without any structural failure. Moreover, steel billets can handle a wide range of temperatures, making them suitable for various applications where pressure vessels are used. In addition to their mechanical properties, steel billets also possess excellent corrosion resistance. This is crucial for pressure vessels, as they are often exposed to corrosive substances or environments. By using corrosion-resistant steel billets, the pressure vessel's lifespan is prolonged, reducing the need for frequent maintenance and replacement. Overall, steel billets play a vital role in the production of pressure vessels by providing the necessary strength, durability, and corrosion resistance required to safely store or transport fluids or gases at high pressures.
Q:What are the different types of casting processes used for shaping steel billets?
There are several different types of casting processes used for shaping steel billets. These processes include: 1. Continuous Casting: This is the most commonly used method for casting steel billets. In this process, molten steel is poured into a water-cooled mold that is continuously moving. As the steel solidifies, it is continuously pulled out of the mold, resulting in a continuous billet. This process is efficient and allows for high production rates. 2. Centrifugal Casting: In this process, molten steel is poured into a rotating mold. The centrifugal force generated by the rotation distributes the molten metal evenly along the mold walls, resulting in a cylindrical billet. This method is used to produce high-quality and defect-free billets. 3. Ingot Casting: This is a traditional method of casting steel billets. In this process, molten steel is poured into a mold and allowed to solidify. The solidified steel, known as an ingot, is then removed from the mold and further processed to obtain the desired shape of the billet. Ingot casting allows for flexibility in terms of billet shape and size. 4. Sand Casting: This process is used for producing large and complex steel billets. It involves creating a mold using a mixture of sand and a binder material. Molten steel is then poured into the mold, and once it solidifies, the mold is removed to reveal the billet. Sand casting allows for the production of custom-shaped billets but is a slower and less precise process compared to others. 5. Investment Casting: Also known as lost-wax casting, this process is suitable for complex and intricate shapes. In investment casting, a wax pattern of the desired billet shape is created. The wax pattern is then coated with a ceramic shell, and the wax is melted out, leaving behind a hollow mold. Molten steel is poured into the mold, and once it solidifies, the ceramic shell is broken to retrieve the billet. Each of these casting processes has its advantages and disadvantages, and the choice of process depends on factors such as the desired billet shape, size, production volume, and quality requirements.
Q:How are steel billets used in the production of gear blanks?
Steel billets are an essential component in the production of gear blanks. Gear blanks are the starting point for the manufacturing of gears. They are essentially the raw, unfinished pieces that will later be shaped and transformed into the final gear product. Steel billets, which are long, rectangular bars of steel, provide the necessary material for the creation of gear blanks. These billets are typically made from high-quality steel that possesses the required strength, durability, and machinability characteristics needed for gear production. To create gear blanks, the steel billets are first heated to a specific temperature to make them more malleable and easier to shape. The heated billets are then subjected to various forming processes, such as forging or extrusion, to transform them into the desired shape of the gear blank. Once the gear blank is formed, it undergoes further machining processes to refine its shape, dimensions, and surface finish. This may include operations such as turning, milling, drilling, or grinding. The precise machining ensures that the gear blank meets the required specifications for the final gear product. The gear blanks produced from steel billets serve as the foundation for the creation of various types of gears, such as spur gears, helical gears, bevel gears, or worm gears. These gear blanks undergo additional steps, such as heat treatment and surface hardening, to enhance their mechanical properties and increase their resistance to wear and fatigue. In summary, steel billets are integral to the production of gear blanks as they provide the raw material from which gears are formed. Through a series of heating, forming, and machining processes, the steel billets are transformed into gear blanks, which are then further processed to create the final gears used in various applications.
Q:How are steel billets used in the production of automotive frames?
Steel billets are used in the production of automotive frames as a primary raw material. Billets are essentially long, rectangular-shaped pieces of steel that are heated and then formed into specific shapes through various manufacturing processes. In the case of automotive frames, these billets are typically heated and then passed through a series of dies and rollers to form the desired shape and dimensions. Once the billets are formed into the appropriate shape, they are further processed through cutting, bending, and welding techniques to create the intricate and sturdy structure of an automotive frame. The use of steel billets in the production of automotive frames is preferred due to the high strength and durability properties of steel, which are crucial for ensuring the safety and structural integrity of the vehicles. Moreover, steel billets offer excellent formability and machinability, allowing manufacturers to create complex frame designs that meet the specific requirements of different vehicle models. Additionally, steel is a cost-effective material, making it a popular choice for mass production in the automotive industry. Overall, steel billets play a vital role in the production of automotive frames by providing a strong and reliable foundation for the vehicle's structure. The use of these raw materials, along with advanced manufacturing techniques, ensures that automotive frames are able to withstand various forces and impacts, ultimately contributing to the overall safety and performance of the vehicles.
Q:What are the safety precautions to be followed while handling steel billets?
When handling steel billets, it is important to follow several safety precautions to prevent accidents and injuries. Some of the key safety precautions to be followed include: 1. Personal Protective Equipment (PPE): Always wear appropriate PPE such as safety goggles, gloves, and steel-toed boots to protect yourself from potential hazards like sharp edges, flying debris, and heavy objects. 2. Lifting and Handling Techniques: Use proper lifting techniques, such as bending your knees and lifting with your legs, to avoid straining your back or causing musculoskeletal injuries. When moving steel billets, use equipment like forklifts, cranes, or lifting slings to ensure safe and secure handling. 3. Secure Stacking: When storing or stacking steel billets, ensure they are stacked securely and evenly to prevent them from toppling over. Use appropriate storage equipment, such as pallets or racks, and ensure they are in good condition and capable of supporting the weight of the billets. 4. Slips, Trips, and Falls: Keep the area around steel billets clean and free from any obstacles or tripping hazards. Use anti-slip mats or flooring in areas prone to spills or wet conditions. Be cautious of any oil or grease on the floor, as it can create slippery surfaces. 5. Fire Safety: Steel billets can produce sparks when being handled, so it is important to ensure a fire-safe environment. Keep the area clear of flammable materials and have fire extinguishers readily available in case of emergencies. 6. Communication and Training: Communicate with your coworkers about the movement of steel billets to avoid collisions or accidents. Additionally, ensure that all employees receive proper training on safe handling practices and understand the potential risks associated with steel billets. 7. Regular Maintenance and Inspections: Regularly inspect equipment, such as forklifts or lifting slings, to ensure they are in good working condition. Report any damages or malfunctions immediately and do not use faulty equipment. By following these safety precautions, you can minimize the risk of accidents, injuries, and damage to both yourself and the steel billets. It is crucial to prioritize safety at all times when handling steel billets.
Q:What are the challenges faced in the production of steel billets?
The production of steel billets encounters various obstacles. One major hurdle is the acquisition of raw materials. Typically, steel billets are created from iron ore, which must first be mined and processed. However, the availability and quality of iron ore can fluctuate, making it difficult to maintain a consistent supply. Another challenge arises from the energy-intensive nature of steel production. Converting iron ore into steel billets demands significant amounts of energy, primarily in the form of electricity and fossil fuels. Consequently, this results in high production costs and contributes to environmental concerns, including greenhouse gas emissions. In addition, the production of steel billets involves intricate metallurgical processes. The steel must be heated to high temperatures and undergo various treatments to achieve the desired properties. Ensuring consistent quality and meeting customer specifications can be problematic, as even slight deviations in the production process can impact the final product's performance. Maintaining a safe working environment poses a considerable challenge in steel billet production. The process involves handling heavy machinery, molten metal, and potentially hazardous chemicals. Effective safety measures and protocols must be implemented to safeguard workers and prevent accidents. Lastly, market dynamics and competition within the steel industry create hurdles in the production of steel billets. Fluctuating demand, changes in customer preferences, and price volatility can affect production planning and profitability. Steel producers must remain competitive by continuously improving efficiency, reducing costs, and adapting to market trends. In summary, the production of steel billets faces challenges related to raw material sourcing, energy consumption, metallurgical processes, safety, and market dynamics. Overcoming these obstacles necessitates a combination of technological advancements, efficient operations, and strategic decision-making to ensure a sustainable and successful production process.
Q:How do steel billets contribute to the overall vibration resistance of a structure?
The specific characteristics of steel billets make a significant contribution to the overall vibration resistance of a structure. Primarily, steel is a dense and rigid material, giving it a high natural frequency. This allows steel billets to effectively absorb and dissipate energy from external vibrations, surpassing the capabilities of other materials. Additionally, steel billets exhibit exceptional damping properties. Damping refers to a material's ability to diminish the magnitude of vibrations over time. Due to their density and rigidity, steel billets can rapidly absorb and dissipate vibrations, thus preventing their spread throughout the structure. This aids in reducing overall vibration levels and subsequently enhances the structure's resistance to vibrations. Furthermore, steel billets possess remarkable tensile strength and stiffness, enabling them to withstand deformation caused by dynamic loads. Consequently, when subjected to vibration forces, steel billets retain their shape and structural integrity, minimizing the risk of failure or damage. The high tensile strength of steel also allows it to endure external forces without enduring substantial deformation or permanent harm. Moreover, steel billets can be specifically designed and manufactured to precise dimensions and shapes, facilitating their optimal integration into various structural components. This ensures that steel billets are positioned optimally within the structure, thereby enhancing their capabilities to resist vibrations. In summary, steel billets contribute to a structure's overall vibration resistance by effectively absorbing and dissipating vibrations, resisting deformation, and maintaining structural integrity. Through these properties, steel billets mitigate the impact of external vibrations, ensuring the durability and stability of the structure.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords