Clamps Billet Aluminum Q235,Q255,Q275,Q345,3SP,5SP,20MnSi
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Clamps Billet Aluminum Q235,Q255,Q275,Q345,3SP,5SP,20MnSi
Specification
Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products.
CNBM Q235,Q275,Q345,3SP,5SP,20MnSi Billets Steel
Hot Rolled Steel Billets/ Mild Steel Bar/ Billet Steel
Specification (see below)
Standard: GB/JIS/ASTM
Size: 50*50mm-180*180mm
Length: 3-12mtrs or Customised
Steel material: Q235,Q255,Q275,Q345,3SP,5SP,20MnSi
Technique: Hot rolled
FOB Unit Ton Price $250-350 and Usually I will quote you CFR price.
MOQ: Usually 1000-10000MT/size
Shipment:By Container,Bulk Vessel
Packaging Details: bundles with steel strips or as customers's requirements
Delivery time: Usually within 30 days after the deposit/LC
Inspection:Third party inspection before loading.
Technical data
Feature Steel Billet
Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc.
The billet is mainly divided into two kinds from the shape:
Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.
Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. ,
Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.
Packaging & Shipping
1. Packaging:
1) Small size: in bundles
2)Big size: in bulk
3)in plastic packing or as per customer requirement
2. Delivery time:
1) Normal size: within 7days send from warehouse directly
2) Special size: with 25-30days customer made for you
3. Trade terms:FOB/CFR/CIF
4. Shippment:
1) length:≤5.8m loaded in 20FT Container with 25-27tons
2) length:≤11.8m loaded in 40FT Container with 25-27tons
3) lengnth:≥12m shipped by bulk vessel, FILO terms
Steel Billet Images
Processing
Usage-Billet Steel
Used for the plant, the bridge,shipment building high-rise building construction,lifting and transportation machinery, equipment manufracturing base building the support foundation pile manufacturing.
Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.
FAQ-Billet Steel
We have organized several common questions for our clients,may help you sincerely:
1) How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
2) How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
3) How long can we receive the product after purchase?
In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.
4)Do you have your own QC department?
Yes, we have, our QC department will inspect the goods during the process of mass production and after completion of production.
hot sale!!! Cast Steel Grades/ mild steel bar/ billet steel
(1): High quality steel with reasonable price.
(2): Wide excellent experiences with after-sale service.
(3): Every process will be checked by responsible QC which insures every product's quality.
(4): Professional packing teams which keep every packing safely.
(5): Trial order can be done in one week.
(6): Samples can be provided as your requirements.
- Q:What is the role of steel billets in the manufacturing of railway signaling systems?
- Steel billets play a crucial role in the manufacturing of railway signaling systems. These billets serve as the primary raw material for the production of various components that are essential for the functioning of these systems. Railway signaling systems are responsible for ensuring the safe and efficient movement of trains on the tracks. They comprise a complex network of electrical and mechanical devices that control the traffic flow, provide information to train operators, and maintain a safe distance between trains. To manufacture these systems, steel billets are utilized in several ways. Firstly, steel billets are used to produce the structural components of railway signaling systems. These components include signal poles, posts, and brackets that support the signaling devices such as lights, signals, and indicators. Steel is chosen for these structural elements due to its high strength, durability, and resistance to environmental factors such as wind, rain, and temperature fluctuations. Secondly, steel billets are employed in the production of various electrical components used in railway signaling systems. These components include wiring conduits, junction boxes, and mounting plates that house and protect the electrical connections and circuitry. Steel's electrical conductivity properties make it an ideal material for these applications. Additionally, steel billets are also utilized in the manufacturing of mechanical components within railway signaling systems. These components include gears, levers, and linkages that facilitate the movement and operation of the signaling devices. Steel's mechanical properties, such as its hardness and ability to withstand high loads, ensure the reliability and longevity of these mechanisms. In summary, steel billets are essential in the manufacturing of railway signaling systems as they provide the necessary raw material for the production of structural, electrical, and mechanical components. Their strength, durability, electrical conductivity, and mechanical properties make them well-suited for the demanding requirements of these systems, ultimately contributing to the safe and efficient operation of railways.
- Q:What are the different types of surface treatment defects found in steel billets?
- Some of the different types of surface treatment defects found in steel billets include scale, pits, cracks, scratches, and surface contamination. These defects can occur due to various factors such as improper cleaning, handling, or storage, as well as the presence of impurities in the steel or the surface treatment process itself.
- Q:What are the different machining processes for steel billets?
- There are several different machining processes that can be used for steel billets, depending on the desired outcome and the specific requirements of the project. Some of the most common machining processes for steel billets include: 1. Turning: This process involves rotating the steel billet against a cutting tool to remove material and create a desired shape or surface finish. Turning can be performed on both the outer and inner surfaces of the billet. 2. Milling: Milling is a versatile machining process that uses a rotating cutting tool to remove material from the surface of the steel billet. It can be used to create various shapes, slots, and holes, and is often employed for precision machining applications. 3. Drilling: Drilling is a machining process that uses a rotating drill bit to create holes in the steel billet. It is commonly used for creating holes of different sizes and depths, and is often a crucial step in the manufacturing of steel components. 4. Grinding: Grinding is a precision machining process that involves removing material from the surface of the steel billet using an abrasive wheel. It is typically used to achieve a smooth and precise finish or to remove any imperfections or irregularities on the surface. 5. Boring: Boring is a process that enlarges an existing hole in the steel billet to achieve a specific diameter or depth. It is often used to create holes with high levels of accuracy and precision, especially in applications where concentricity is critical. 6. Thread cutting: This process involves cutting threads into the steel billet using a specialized cutting tool. It is commonly used to create threaded holes or bolts, which are essential for joining steel components together. 7. Broaching: Broaching is a machining process that uses a specialized tool called a broach to remove material from the steel billet in a series of successive cuts. It is often used to create complex shapes, such as keyways or splines, on the surface of the billet. These are just a few examples of the different machining processes that can be used for steel billets. The choice of the specific process will depend on factors such as the desired outcome, the complexity of the shape, the required surface finish, and the tolerances that need to be achieved.
- Q:What are the safety precautions to be taken while handling steel billets?
- When handling steel billets, there are several safety precautions that should be followed to ensure the well-being of individuals as well as the integrity of the material. Some key safety precautions include: 1. Personal Protective Equipment (PPE): It is essential to wear appropriate PPE such as gloves, safety glasses, and steel-toed boots to protect against potential injuries. Steel billets are heavy and can cause severe harm if dropped or mishandled. 2. Proper Lifting Techniques: When lifting steel billets, it is crucial to use proper lifting techniques, such as bending at the knees and keeping the back straight. This helps prevent strains, sprains, and other musculoskeletal injuries. 3. Adequate Training: Workers should receive proper training on how to handle steel billets safely. This includes understanding the weight and dimensions of the billets, knowing how to move them safely, and being aware of potential hazards. 4. Secure Storage and Transportation: Steel billets should be stored and transported in a secure manner to prevent accidents. They should be properly stacked, secured, and not overloaded to avoid falling or shifting during handling. 5. Clear Communication: In a work environment where multiple individuals are involved in handling steel billets, clear communication is essential. This includes using appropriate signals and verbal communication to coordinate movements and ensure everyone's safety. 6. Inspect Equipment: Before handling steel billets, it is important to inspect the equipment being used, such as cranes, forklifts, or other lifting devices. This helps identify any potential issues or malfunctions that could compromise safety. 7. Regular Maintenance: Regular maintenance of equipment used for handling steel billets is crucial to ensure their proper functioning. This includes inspections, repairs, and replacements as needed. 8. Hazard Identification: Workers should be trained to identify potential hazards associated with handling steel billets, such as sharp edges, hot surfaces, or slippery floors. Identifying and addressing these hazards promptly can prevent accidents and injuries. 9. Ergonomic Considerations: Ergonomic factors should be considered when designing workstations and handling procedures. This includes ensuring proper height and reach distances, providing adequate space for movement, and using tools or equipment that reduce strain on the body. 10. Emergency Response: Lastly, workers should be aware of emergency response procedures in case of accidents or injuries. This includes knowing the location of first aid kits, fire extinguishers, emergency exits, and how to report incidents to supervisors. By following these safety precautions, individuals can mitigate the risks associated with handling steel billets and create a safer work environment.
- Q:What are the main challenges in the production of steel billets?
- Producing steel billets, which are semi-finished products used in various steel products, presents several challenges. One of the primary obstacles is guaranteeing reliable and high-quality raw materials. Steel billets are typically made from either scrap metal or iron ore, and obtaining a steady supply of these materials is difficult due to availability and cost fluctuations. Another challenge is achieving the desired chemical composition and mechanical properties of the steel billets. The production process involves steps like melting, refining, and casting, each of which must be carefully controlled to achieve the desired outcome. Precise control over temperature, alloying elements, and impurities is crucial to meet the required specifications. The choice of casting method also plays a significant role in steel billet production. There are two methods: continuous casting and ingot casting, each with its own advantages and disadvantages. Continuous casting is more commonly used due to its higher productivity and better control over dimensions and surface quality. However, maintaining a stable and continuous process requires sophisticated equipment and expertise. The cooling and solidification process after casting is another critical challenge. Proper cooling is necessary to prevent defects like cracks, segregations, or uneven microstructures. The cooling rate must be carefully controlled to achieve the desired microstructure and mechanical properties of the billets. Additionally, handling and storing steel billets can be challenging. Billets are often transported and stored in large quantities, so maintaining their quality and preventing damage is crucial. Proper handling equipment, storage conditions, and logistics management are necessary to minimize potential damage or loss. Lastly, environmental considerations are increasingly important in steel billet production. The process generates significant emissions, waste, and energy consumption. Meeting environmental regulations and implementing sustainable practices, such as scrap metal recycling or reducing energy consumption, can be challenging but are crucial for the industry's long-term viability. In summary, the main challenges in steel billet production include ensuring consistent and high-quality raw materials, achieving desired chemical composition and mechanical properties, selecting the appropriate casting method, controlling the cooling and solidification process, handling and storage, and addressing environmental concerns. Overcoming these challenges requires advanced technology, skilled workers, and efficient management practices in the steel production industry.
- Q:What are the different types of surface finish inspection methods for steel billets?
- There are several different types of surface finish inspection methods that can be used for steel billets. These methods are crucial in determining the quality and suitability of the billets for further processing or use. Some of the common surface finish inspection methods for steel billets include: 1. Visual inspection: This is a basic method where the surface of the billet is visually examined for any irregularities, such as cracks, pits, scratches, or any other surface imperfections. It is a quick and cost-effective method but may not be able to detect subtle defects. 2. Magnetic particle inspection: This method involves magnetizing the surface of the billet and applying fine iron particles on it. Any surface cracks or defects will cause a leakage of magnetic field, attracting the iron particles and making them visible under appropriate lighting conditions. 3. Dye penetrant inspection: In this method, a liquid dye is applied to the surface of the billet. The dye penetrates into any surface cracks or defects, and after a certain period, excess dye is removed. A developer is then applied, which draws out the dye from the cracks and defects, making them visible. 4. Ultrasonic testing: This method utilizes high-frequency sound waves that are transmitted through the steel billet. The waves are reflected back when they encounter any surface irregularities, such as cracks or voids. By analyzing the time taken for the waves to return, the size and depth of the defects can be determined. 5. Eddy current testing: This non-destructive testing method uses electromagnetic induction to detect surface defects. An alternating current is passed through a coil, creating a magnetic field. When the coil is near the surface of the billet, any defects will disrupt the magnetic field, causing a change in the electrical impedance. This change is measured and analyzed to identify surface defects. Each of these inspection methods has its advantages and limitations, and the choice of method depends on the specific requirements, the size and shape of the billet, and the level of accuracy desired. By employing these surface finish inspection methods, manufacturers can ensure the quality and reliability of the steel billets before they are further processed or used in various applications.
- Q:What are the main challenges in the recycling of steel billets?
- One of the main challenges in the recycling of steel billets is the presence of impurities and contaminants that need to be removed in order to produce high-quality recycled steel. Another challenge is the need for efficient sorting and separation techniques to properly categorize and process different types of steel billets. Additionally, the energy-intensive nature of the steel recycling process poses a challenge in terms of reducing carbon emissions and achieving sustainability goals.
- Q:How often is it? What is the range of temperature in the process of rolling? What is the temperature of the final rolling?
- The final rolling temperature is the rolling temperature of the last pass, and also the rolling temperature of the rolling pass at the last effective (very small level pass, not an effective rolling pass)
- Q:How do steel billets contribute to the manufacturing of consumer goods?
- Consumer goods manufacturing heavily relies on steel billets, which serve as essential raw materials for a diverse array of products. These billets, formed through the casting process, are semi-finished steel items. After being heated, they are shaped into specific forms, depending on their intended applications. Steel billets significantly contribute to consumer goods manufacturing, particularly in the production of various metal parts. These parts can be found in automobiles, appliances, machinery, and furniture, among others. By utilizing steel billets as starting materials, manufacturers can create components that possess strength, durability, and resistance to wear and tear. Consequently, the final consumer goods have a prolonged lifespan and can withstand everyday usage demands. Additionally, the construction industry frequently employs steel billets for the fabrication of structural steel beams, columns, and other building materials. These components play critical roles in constructing infrastructure, residential buildings, commercial complexes, and other structures. Steel's high strength-to-weight ratio makes it an ideal material for these applications, providing essential structural support while minimizing weight and cost. Apart from their strength and durability, steel billets also offer versatility in terms of formability and machinability. This means that they can be effortlessly shaped, welded, and cut into various sizes and designs, enabling manufacturers to customize steel components to meet specific consumer requirements. This flexibility allows for the production of a wide range of consumer goods, ranging from small intricate parts to large complex structures. The use of steel billets in consumer goods manufacturing also contributes to sustainability. Steel is a highly recyclable material, and the production of steel products using recycled steel requires significantly less energy and resources compared to using virgin materials. This reduces the environmental impact associated with consumer goods production and promotes a more circular economy. In conclusion, steel billets are essential components in consumer goods manufacturing. Their strength, durability, versatility, and recyclability make them an ideal material choice for producing a diverse range of products that fulfill consumers' needs and expectations.
- Q:What are the main challenges in manufacturing steel billets?
- The main challenges in manufacturing steel billets include ensuring consistent quality and uniformity, managing the high temperatures involved in the process, maintaining efficient production rates, minimizing material waste, and addressing environmental concerns related to energy consumption and emissions. Additionally, ensuring the safety of workers and implementing effective maintenance practices are important challenges in the manufacturing of steel billets.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Clamps Billet Aluminum Q235,Q255,Q275,Q345,3SP,5SP,20MnSi
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords