• Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 1
  • Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 2
  • Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 3
  • Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 4
  • Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 5
  • Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet System 6
Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.

A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.


Advantage of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Applications of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:

Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc 

Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.

Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Specifications of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

Quality

Q/BQB 440-2003

JIS G3312-1994

JIS G3321

EN 10326-2004

ASTM A653-02a

EN 10327-2004

(BASE PLATE)

(BASE PLATE)


Commercial Steel

DC51D

SGCC

SGLCC

DX51D+Z

DX51D+AZ

CS Type A/B/C

Forming Steel

St01,St02,St03

SGCD1

SGLCD1

FS Type A, Type B

Drawing

DC52D /DC53D

-

DX52D+Z

DX52D+AZ

DDS TYPE A/C

Steel

DX53D+Z

DX53D+AZ

Structural

S280GD (StE28)

SGC400

SGLC400

S280D+Z

DX54D+AZ

SS275

Steel

S350GD (StE34)

SGC440

SGLC440

S350D+Z

S350D+AZ

SS340 Class1


FAQ of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.



Q:How are steel billets used in the production of hydraulic cylinders?
Hydraulic cylinders rely on steel billets as a crucial raw material for their production. These billets, which are cylindrical and made of high-quality steel, serve as the starting point for the manufacturing process. To begin, the steel billets are heated in a furnace. This heating process, known as hot rolling, makes the billets more malleable and easier to work with. Once heated, the billets are then passed through a series of rollers, shaping and elongating them to the desired size and form. After the initial shaping, the billets undergo further processing through various machining operations. These operations include drilling, boring, milling, and grinding, among others. By using these machining processes, the necessary features and dimensions for hydraulic cylinders, such as piston and rod bores, mounting holes, and fluid flow ports, are created. Once the machining operations are complete, the billets are subjected to heat treatment to improve their mechanical properties. The specific heat treatment method, either quenching and tempering or annealing, depends on the hydraulic cylinder's requirements. Heat treatment enhances the steel's strength, hardness, and durability, ensuring that the hydraulic cylinder can withstand the high pressures and forces it will encounter during operation. After shaping, machining, and heat treatment, the steel billets are ready for the final assembly stage. Other components, such as pistons, rods, seals, and valves, are added to complete the hydraulic cylinder. These components are carefully integrated with the billets to ensure proper functionality and reliable performance. In conclusion, steel billets are essential for the production of hydraulic cylinders. They undergo heating, shaping, machining, heat treatment, and assembly to form the core structure of the cylinder. This guarantees that the hydraulic cylinder possesses the necessary strength, durability, and precision required for efficient operation in a variety of industrial and mobile applications.
Q:What are the different surface treatments applied to stainless steel billets?
There are several different surface treatments that can be applied to stainless steel billets, depending on the desired outcome and application. Some common treatments include passivation, pickling, electropolishing, and blasting. Passivation helps to improve corrosion resistance by removing any free iron from the surface. Pickling involves the use of acids to remove impurities and oxide layers from the surface. Electropolishing is an electrochemical process that provides a smooth and shiny finish. Blasting, on the other hand, involves using abrasive particles to remove surface contaminants and create a textured finish. These treatments can enhance the appearance, cleanliness, and durability of stainless steel billets for various industrial applications.
Q:What are the different types of steel billet welding processes?
Various industries commonly use several different types of steel billet welding processes. These processes include the following: 1. SMAW (Shielded Metal Arc Welding), also known as stick welding, utilizes a flux-coated electrode that is manually fed into the welding pool. It is a versatile and widely employed method for welding steel billets. 2. GMAW (Gas Metal Arc Welding), commonly referred to as MIG welding, involves a continuously fed wire electrode and a shielding gas to protect the weld pool. Due to its efficiency and ease of use, it is a popular choice for welding steel billets. 3. FCAW (Flux-Cored Arc Welding) is similar to GMAW, but instead of a solid wire, it uses a tubular electrode filled with flux. This process is often favored for outdoor or windy conditions due to the flux's superior protection against atmospheric contamination. 4. SAW (Submerged Arc Welding) entails feeding a consumable electrode and a granular flux into the weld zone, while the arc remains submerged beneath a layer of flux. It is commonly applied for welding large steel billets because of its high deposition rates and deep penetration capabilities. 5. GTAW (Gas Tungsten Arc Welding), also known as TIG welding, utilizes a non-consumable tungsten electrode and a shielding gas to safeguard the weld pool. This precise and high-quality welding process is suitable for thin steel billets or applications that require exceptional weld aesthetics. 6. ESW (Electroslag Welding) is a highly efficient process employed for welding thick steel billets. It involves melting a consumable electrode and the base metal in a molten slag pool, which provides protection and acts as a filler material. 7. LBW (Laser Beam Welding) utilizes a high-energy laser beam to melt and join steel billets together. It is a precise and fast welding process commonly used in industries such as automotive and aerospace. Each of these welding processes has its own advantages and limitations. The choice of process depends on factors such as the type and thickness of the steel billet, desired weld quality, production requirements, and cost considerations.
Q:How are steel billets used in the manufacturing of medical equipment?
Steel billets are used in the manufacturing of medical equipment as a raw material that can be shaped and machined into various components such as surgical instruments, implants, and medical device casings. The high strength and durability of steel make it suitable for producing equipment that requires precision, reliability, and resistance to corrosion.
Q:What are the common shipping methods for steel billets?
Steel billets can be shipped using different methods, including container shipping, bulk shipping, and rail transportation. Container shipping is commonly used when transporting smaller quantities of billets. Billets are loaded into standard shipping containers, usually 20 or 40 feet long, and then transported by cargo vessels. This method is convenient and ensures the safety of the billets during transit. Bulk shipping, on the other hand, is preferred for larger quantities of steel billets. In this method, billets are loaded directly onto cargo vessels without using containers. This allows for cost-effective transportation of large volumes of billets. Specialized bulk carriers are designed to handle heavy cargo and ensure secure delivery. For domestic or regional transportation, rail transportation is a popular option. Steel billets are loaded onto specialized railcars that can carry heavy loads, and they are transported through rail networks. This method offers efficient and reliable transportation, especially for shorter distances. Ultimately, the choice of shipping method for steel billets depends on factors such as quantity, destination, cost, and logistical capabilities. Each method has its own advantages and considerations, so it is important to select the most suitable option based on the specific requirements of the shipment.
Q:What are the different surface defects found in tool steel billets?
There are several different surface defects that can be found in tool steel billets. These defects can occur during the manufacturing process or can be the result of handling, transportation, or storage. Some of the common surface defects found in tool steel billets include: 1. Decarburization: This defect occurs when the surface of the steel billet loses its carbon content due to exposure to high temperatures during heat treatment or improper cooling. Decarburization can lead to reduced hardness and wear resistance in the tool steel. 2. Scale: Scale refers to the formation of oxide layers on the surface of the steel billet. It can occur during the hot rolling process or due to exposure to high temperatures. Scale can negatively impact the surface finish and can also affect the mechanical properties of the tool steel. 3. Cracks: Cracks can occur on the surface of tool steel billets due to various reasons such as improper cooling, excessive stress during hot rolling, or quenching. These cracks can be either surface cracks (which are visible) or internal cracks (which may not be immediately visible). 4. Inclusions: Inclusions are non-metallic particles or impurities that are trapped within the steel billet during the manufacturing process. These inclusions can cause weak spots or discontinuities in the material, leading to reduced toughness and fatigue resistance. 5. Pitting: Pitting refers to the formation of small holes or cavities on the surface of the steel billet. It can be caused by localized corrosion, exposure to aggressive environments, or improper handling. 6. Roll marks: Roll marks are surface imperfections that occur due to the contact between the steel billet and the rolls during the hot rolling process. These marks can appear as grooves, scratches, or indentations on the surface of the tool steel. 7. Surface contamination: Tool steel billets can get contaminated with foreign substances such as dirt, oil, grease, or other particles during handling, transportation, or storage. These contaminants can negatively affect the surface finish and can also lead to corrosion or other defects. It is important to detect and address these surface defects in tool steel billets to ensure the desired performance and reliability of the final tooling products. Various inspection techniques and quality control measures are employed to identify and mitigate these defects, such as visual inspection, ultrasonic testing, magnetic particle inspection, and surface cleaning processes.
Q:How is the demand for steel billets projected to change in the future?
Various factors are expected to cause significant changes in the demand for steel billets in the future. One of the main drivers of this change is the overall expansion of the construction and infrastructure sectors. As economies continue to develop, there will be an increasing need for steel billets to support the construction of buildings, bridges, roads, and other infrastructure projects. Moreover, the demand for steel billets is also expected to be influenced by the automotive industry. The rising popularity of electric vehicles and the need for lightweight materials to enhance fuel efficiency may lead to the substitution of steel billets with alternative materials like aluminum or carbon fiber in certain automotive applications. Furthermore, the renewable energy sector is another potential factor that could impact the demand for steel billets. As the world shifts towards cleaner energy sources, there will be a growing requirement for wind turbines and solar panels, which predominantly rely on steel. This could result in an increased demand for steel billets in the production of these renewable energy components. Additionally, advancements in technology and manufacturing processes may also affect the demand for steel billets. As new techniques and materials are developed, there is a possibility that steel billets could be replaced by alternative materials or manufacturing methods that offer superior performance or cost-efficiency. In conclusion, while the demand for steel billets is projected to remain strong in the foreseeable future, it is likely to undergo changes based on the growth of construction, infrastructure, automotive, and renewable energy sectors, as well as advancements in technology and materials.
Q:Are steel billets subject to any heat treatment processes?
Yes, steel billets can be subject to heat treatment processes. Heat treatment is a controlled process of heating and cooling metals to alter their physical and mechanical properties. Steel billets, which are semi-finished steel products with a square or rectangular cross-section, can undergo various heat treatment processes depending on the desired properties for the final product. One common heat treatment process for steel billets is annealing. Annealing involves heating the billets to a specific temperature and then slowly cooling them to relieve internal stresses and improve their ductility and toughness. This process is typically used to soften the steel and make it more workable for subsequent manufacturing processes. Another heat treatment process for steel billets is quenching and tempering. Quenching involves rapidly cooling the heated steel billets in a liquid medium, such as oil or water, to achieve high hardness and strength. This process results in a hard but brittle material. To reduce the brittleness, the quenched billets are then tempered by reheating them to a lower temperature and slowly cooling them. Tempering improves the toughness and ductility of the steel while maintaining a certain level of hardness. Other heat treatment processes that can be applied to steel billets include normalizing, which involves heating the steel above its critical temperature and then cooling it in still air to refine the grain structure, and stress relieving, which is done to reduce residual stresses in the billets after extensive machining or welding. Overall, heat treatment processes can significantly enhance the mechanical properties of steel billets, making them more suitable for various applications in industries such as automotive, construction, and manufacturing.
Q:How are steel billets used in the manufacturing of automotive components?
The manufacturing of automotive components heavily relies on steel billets, which serve as essential raw materials. These billets, being semi-finished products, undergo shaping into various forms to create the necessary components. To start with, steel billets are heated to a specific temperature, rendering them malleable and easier to manipulate. Once they reach the desired temperature, they are then placed into molds or dies and subjected to intense pressure to achieve the desired form. This entire process is commonly referred to as forging. When it comes to automotive components like engine parts, gears, axles, and suspension components, high strength and durability are crucial requirements. Steel billets are preferred for these applications due to their outstanding mechanical properties, including high tensile strength, toughness, and wear resistance. Following the forging process, the shaped billets undergo further processing utilizing various techniques such as machining, heat treatment, and surface finishing. These procedures are crucial in ensuring that the components meet the necessary performance standards, dimensional accuracy, and surface quality demanded by automotive manufacturers. The utilization of steel billets in the manufacturing of automotive components offers numerous advantages. Steel is easily accessible, cost-effective, and boasts a high recycling rate, making it an environmentally friendly choice. Additionally, steel's versatility allows for a wide range of component designs and customization options, catering to specific automotive requirements. To conclude, the significance of steel billets in the manufacturing of automotive components cannot be overstated. Their malleability and exceptional mechanical properties make them an ideal raw material for forging processes, enabling the production of high-strength and durable components used across various automotive applications.
Q:What are the potential applications of steel billets in the agricultural sector?
The agricultural sector can benefit greatly from the various potential applications of steel billets. One primary use of steel billets in agriculture involves their utilization in the manufacturing of farm equipment and machinery. Plows, cultivators, and seeders, which are essential for tilling the soil, planting seeds, and maintaining agricultural land, can be produced using steel billets to create durable and sturdy components. Steel billets also find usefulness in the construction of storage structures on farms. Due to its strength and durability, steel is an ideal material for constructing grain silos, barns, and sheds. These structures provide long-lasting and reliable solutions for storing crops, livestock, and equipment. Furthermore, steel billets can be used to fabricate fences and gates for animal enclosures. Steel fences offer superior strength and security, ensuring the safety of farm animals and preventing them from wandering off. These fences are also resistant to corrosion and capable of enduring harsh weather conditions. Moreover, steel billets can be employed in the construction of irrigation systems and water management infrastructure on farms. Steel pipes and fittings are commonly used to transport water from a source to the fields, promoting proper irrigation and efficient water distribution. Lastly, steel billets can be employed in the production of machinery used for processing agricultural products. Grain mills, threshers, and sorting machines, for example, can be manufactured with steel components, aiding in the processing and packaging of crops. Overall, the potential applications of steel billets in the agricultural sector are extensive and diverse. From farm equipment and storage structures to fencing and irrigation systems, steel billets play a vital role in enhancing efficiency, durability, and productivity in agriculture.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords