• Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 1
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 2
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 3
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 4
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 5
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 6
Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Specification

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products.

CNBM Q235,Q275,Q345,3SP,5SP,20MnSi Billets Steel

Hot Rolled Steel Billets/ Mild Steel Bar/ Billet Steel

Specification (see below)

Standard: GB/JIS/ASTM

Size: 50*50mm-180*180mm

Length: 3-12mtrs or Customised

Steel material: Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Technique: Hot rolled

FOB Unit Ton Price $250-350 and Usually I will quote you CFR price.

MOQ: Usually 1000-10000MT/size

Shipment:By Container,Bulk Vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: Usually within 30 days after the deposit/LC

Inspection:Third party inspection before loading.

Technical data

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Feature Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.


Packaging & Shipping

1. Packaging:

1) Small size: in bundles

2)Big size: in bulk

3)in plastic packing or as per customer requirement

2. Delivery time:

1) Normal size: within 7days send from warehouse directly

2) Special size: with 25-30days customer made for you

3. Trade terms:FOB/CFR/CIF

4. Shippment: 

1) length:≤5.8m loaded in 20FT Container with 25-27tons

2) length:≤11.8m loaded in 40FT Container with 25-27tons

3) lengnth:≥12m shipped by bulk vessel, FILO terms

Steel Billet Images

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Processing

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Usage-Billet Steel

 Used for the plant, the bridge,shipment building high-rise building construction,lifting and transportation machinery, equipment manufracturing base building the support foundation pile manufacturing.

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.

 

FAQ-Billet Steel

We have organized several common questions for our clients,may help you sincerely: 

1) How about your company?

 A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

2) How to guarantee the quality of the products?

 We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

3) How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

4)Do you have your own QC department?

 Yes, we have, our QC department will inspect the goods during the process of mass production and after completion of production.

hot sale!!! Cast Steel Grades/ mild steel bar/ billet steel        

(1): High quality steel with reasonable price. 
(2): Wide excellent experiences with after-sale service. 
(3): Every process will be checked by responsible QC which insures every product's quality.
(4): Professional packing teams which keep every packing safely. 
(5): Trial order can be done in one week. 
(6): Samples can be provided as your requirements. 

Q:How are steel billets used in the manufacturing of oil and gas industry components?
Steel billets are an essential raw material used in the manufacturing of various components for the oil and gas industry. These billets, which are semi-finished steel products, play a crucial role in the production of pipes, valves, fittings, and other equipment required for oil and gas extraction, transportation, and processing. One of the primary applications of steel billets in the oil and gas industry is in the production of seamless and welded pipes. These pipes are used extensively for the transportation of oil, gas, and other fluids over long distances. Steel billets are first heated and then passed through a series of rollers to form seamless pipes. In the case of welded pipes, the billets are first formed into a tube shape and then welded along the length to create a strong and durable pipe. Steel billets are also used in the manufacturing of valves, which are crucial components in the oil and gas industry. Valves are used to control the flow of fluids within pipelines and equipment. Billets are machined and shaped to create valve bodies, which are then fitted with various internal components such as seats, discs, and stems. These valves are designed to withstand high pressures and temperatures, ensuring reliable and safe operation in the oil and gas industry. Furthermore, steel billets are utilized in the production of fittings, which are used to connect and join pipes together. Fittings such as elbows, tees, couplings, and flanges are manufactured from billets by machining and shaping them into the required dimensions and configurations. These fittings play a critical role in creating a reliable and leak-free pipeline system for the transportation of oil and gas. In addition to pipes, valves, and fittings, steel billets also find applications in the manufacturing of other equipment used in the oil and gas industry. These include drill bits, pumps, compressors, and various structural components for offshore platforms and refineries. The strength, durability, and corrosion resistance of steel make it an ideal material for these demanding applications, and steel billets serve as the starting point for their production. In conclusion, steel billets are a crucial raw material in the manufacturing of components for the oil and gas industry. Whether it is pipes, valves, fittings, or other equipment, billets are transformed through various processes to create the essential components required for the extraction, transportation, and processing of oil and gas.
Q:What are the different surface finishes available for steel billets?
Steel billets can be finished in several different ways, depending on their specific requirements and intended use. Some commonly used surface finishes include: 1. Hot Rolled: Steel billets are rolled at high temperatures, resulting in a rough and scaled surface. This finish is suitable for applications where aesthetics are not a priority. 2. Cold Rolled: Steel billets are rolled at room temperature to achieve a smoother and more polished surface. Cold rolling improves dimensional accuracy and surface quality. 3. Pickled and Oiled: Scale and rust are removed from the steel billets using an acid solution, followed by an oil coating to prevent corrosion. This finish provides a clean and rust-free surface, commonly used in the automotive and construction industries. 4. Galvanized: A zinc coating is applied to the steel billets to protect them from corrosion. This finish offers excellent corrosion resistance, making it suitable for outdoor applications like fencing, roofing, and structural components. 5. Passivated: Free iron is removed from the steel surface through a chemical process, enhancing its corrosion resistance. This finish is often used in the production of stainless steel billets to improve their resistance to rust and other forms of corrosion. 6. Shot Blasting: Small abrasive particles are projected onto the steel billets' surface to remove scale, rust, and impurities. This process creates a textured and uniform finish, ideal for applications requiring improved adhesion, such as painting or coating. 7. Polished: Abrasive materials are used to smoothen the surface of steel billets and achieve a high-gloss finish. This finish is commonly used for decorative purposes in furniture, architectural components, and jewelry. It's important to consider various factors, such as the intended application, desired aesthetics, and required corrosion resistance, when choosing a surface finish for steel billets.
Q:What are the different methods of surface cleaning for steel billets?
Steel billets can be cleaned using various methods, each with its own benefits and applications. Let's explore these methods: 1. Shot Blasting: By propelling steel shots or grits at high speeds onto the billet surface, shot blasting effectively eliminates rust, mill scale, and other impurities, leaving behind a clean and textured surface. This technique is commonly employed to prepare billets for subsequent processes like painting or coating. 2. Acid Pickling: Acid pickling involves immersing the billets in an acid bath, typically hydrochloric or sulfuric acid. The acid reacts with surface oxides and scales, dissolving them and resulting in a clean surface. Acid pickling can remove a wide range of contaminants, but it must be carefully controlled to prevent hydrogen embrittlement. 3. Mechanical Cleaning: Mechanical cleaning techniques employ abrasive tools or equipment to physically scrub or scrape the billet surface. Wire brushes, abrasive pads, or sandpaper can be used to eliminate loose rust, scale, and dirt. This method is suitable for small-scale or localized cleaning but may be time-consuming for larger surfaces. 4. Water Jetting: Water jetting employs a high-pressure water stream to remove dirt, rust, and other contaminants from billet surfaces. The force of the water effectively eliminates loose debris without damaging the underlying steel. Water jetting is an environmentally friendly method that does not involve chemicals and is commonly used for light cleaning or maintenance purposes. 5. Chemical Cleaning: Chemical cleaning utilizes specialized chemicals or solutions to dissolve or neutralize contaminants on the billet surface. This method can be effective in removing stubborn stains, oils, or specific types of corrosion. However, careful selection and handling of chemicals are necessary to avoid any adverse effects on the steel or the environment. 6. Electrochemical Cleaning: Electrochemical cleaning, also known as electrolytic cleaning or electrocleaning, employs an electric current to remove surface contaminants. The billets are immersed in an electrolyte solution, and the application of an electric current causes the contaminants to dissolve or deposit onto an electrode. This method is particularly effective for removing organic contaminants or for precision cleaning. Each method possesses its own advantages and limitations. The choice of the appropriate surface cleaning method for steel billets depends on factors such as the type and severity of contamination, desired surface finish, and specific requirements of subsequent processes.
Q:What are the different types of extrusion processes used for shaping steel billets?
Steel billets can be shaped using various extrusion processes in the manufacturing industry to create a wide range of steel products in different sizes and shapes. Examples of commonly used extrusion processes for steel billet shaping are: 1. Hot extrusion: This method involves heating the steel billet above its recrystallization temperature and then forcing it through a die to achieve the desired shape. The elevated temperature enhances the steel's malleability, making it easier to shape. 2. Cold extrusion: In contrast to hot extrusion, cold extrusion involves shaping the steel billet at room temperature or slightly higher. This process is suitable for producing precise and smooth finished components or smaller parts. 3. Direct extrusion: In direct extrusion, the steel billet is introduced into a chamber or container with a die at one end. A plunger or ram is then used to apply force, pushing the billet through the die and shaping it. This method is commonly used for creating long and continuous shapes like rods, tubes, and bars. 4. Indirect extrusion: Indirect extrusion is similar to direct extrusion, but in this process, the die remains stationary while the force is applied to the chamber or container. This causes the container to move and push the billet through the die. Indirect extrusion is preferred for producing complex shapes that require precise control over the extrusion process. 5. Impact extrusion: Impact extrusion is a specialized form of extrusion that utilizes a high-velocity impact force to shape the steel billet. The billet is placed inside a die, and a punch or hammer strikes it, causing it to flow and take the desired shape. This method is commonly used for creating hollow or tubular shapes like cans or containers. These examples represent only a fraction of the extrusion processes available for shaping steel billets. Each process has its own advantages and limitations, depending on the desired shape, size, and properties of the final product. Manufacturers select the most suitable extrusion process based on their specific requirements and considerations.
Q:How are steel billets used in the manufacturing of aerospace components?
Steel billets serve as a crucial raw material in the production of aerospace components. These semi-finished steel products, shaped like squares or rectangular solids, undergo a series of processes to become the required parts. To begin with, the steel billets go through a heating process called "hot working." This involves subjecting the billets to high temperatures, typically around 1200-1300°C, to increase their malleability and facilitate shaping. The heated billets are then passed through rolling mills, where they gradually decrease in size and take on the desired forms, such as bars, rods, or sheets. Once the steel billets have been shaped accordingly, they undergo further processing techniques like forging, extrusion, or machining to create specific aerospace components. For instance, the billets can be forged or machined to manufacture critical parts like engine shafts, landing gear components, or structural supports. The utilization of steel billets in aerospace manufacturing presents several advantages. Steel is renowned for its high strength, durability, and excellent mechanical properties, making it an ideal material for aerospace applications. Steel components can endure extreme conditions, such as high temperatures and pressures, while resisting corrosion and fatigue, thereby ensuring the safety and reliability of aerospace systems. Furthermore, steel billets can be customized to meet the stringent requirements of aerospace components. By carefully controlling the composition, heat treatment, and manufacturing processes, steel billets can be tailored to exhibit specific properties, such as a high strength-to-weight ratio, exceptional heat resistance, or enhanced fatigue life. This customization guarantees that the resulting aerospace components meet the industry's demanding standards. In conclusion, steel billets play a vital role in the production of aerospace components. Through a series of heating, shaping, and processing techniques, steel billets are transformed into various forms that are then further processed to create critical aerospace parts. The utilization of steel as a material offers exceptional strength, durability, and customization possibilities, thereby ensuring the production of high-quality and reliable aerospace components.
Q:How are steel billets manipulated during the manufacturing process?
To transform steel billets into usable steel products, various manipulation techniques are employed during the manufacturing process. These techniques comprise heating, rolling, forging, and cutting. The initial step involves heating the steel billets in a furnace to achieve a specific temperature known as the rolling temperature. This heating process is crucial as it enhances the billet's malleability and reduces its brittleness, making it easier to manipulate. Once the billets are adequately heated, they undergo a series of passes through rolling mills. These mills exert pressure on the billets, causing them to elongate and take on the desired shape. The rolling process can be performed using either hot or cold methods, depending on the requirements of the final product. Hot rolling is typically employed for large-scale production, while cold rolling is more commonly used for precision applications. Another technique used to manipulate steel billets is forging. This method involves subjecting the billets to compressive forces using hammers or presses. Through forging, the strength of the billets is enhanced, their grain structure is improved, and their mechanical properties are refined. Forged steel billets find application in industries such as automotive and aerospace, where high strength and resistance to impact and fatigue are crucial. Cutting is also an essential technique employed during the manufacturing process. Steel billets are cut into desired lengths using saws or shears. This step ensures that the billets are converted into manageable sizes suitable for further processing or to meet specific customer requirements. In conclusion, the manufacturing process of steel billets involves several manipulation techniques. These include heating, rolling, forging, and cutting. Each of these methods contributes to shaping the raw billets and modifying their properties, making them suitable for use in various industries such as construction, manufacturing, and transportation.
Q:Are steel billets used in the production of electrical transmission towers?
Yes, steel billets are commonly used in the production of electrical transmission towers. Steel billets are the raw material that is used to manufacture various steel products, including transmission towers. These billets are heated and then shaped into the required sections and lengths to construct the tower structures.
Q:What is Alfa carbon? What is beta carbon?
Alfa is directly connected with the functional groups of carbon atoms of carbon atoms, such as CH3CH2COOH CH2 in which methylene propionate is Alfa carbon carbon carbon atom is the beta carbon atom is directly connected with the functional groups and the connection of the carbon (around Kazakhstan), such as the CH3CH2COOH CH3 propionic acid methyl carbon is the beta carbon
Q:What are the potential applications of steel billets in the agricultural sector?
Steel billets have a wide range of potential applications in the agricultural sector. One of the primary uses of steel billets in agriculture is for the manufacturing of farm equipment and machinery. Steel billets can be used to produce durable and sturdy components such as plows, cultivators, and seeders, which are essential for tilling the soil, planting seeds, and maintaining agricultural land. Steel billets can also be utilized in the construction of storage structures on farms. Steel is known for its strength and durability, making it an ideal material for constructing grain silos, barns, and sheds. These structures provide farmers with a reliable and long-lasting solution for storing crops, livestock, and equipment. In addition, steel billets can be used to fabricate fences and gates for animal enclosures. Steel fences offer superior strength and security, ensuring the safety of farm animals and preventing them from wandering off. These fences are also resistant to corrosion and are capable of withstanding harsh weather conditions. Furthermore, steel billets can be employed in the construction of irrigation systems and water management infrastructure on farms. Steel pipes and fittings are commonly used to transport water from a source to the fields, ensuring proper irrigation and efficient water distribution. Lastly, steel billets can be utilized in the production of machinery used for processing agricultural products. For example, steel components can be used to manufacture grain mills, threshers, and sorting machines, which aid in the processing and packaging of crops. Overall, the potential applications of steel billets in the agricultural sector are vast and varied. From farm equipment and storage structures to fencing and irrigation systems, steel billets play a crucial role in enhancing efficiency, durability, and productivity in agriculture.
Q:How do steel billets contribute to the food processing industry?
The food processing industry benefits greatly from the use of steel billets in various ways. Firstly, steel billets play a significant role in the manufacturing of machinery and equipment utilized in food processing. Examples include conveyor belts, mixers, crushers, and packaging machines, among others. These machines are vital for the processing, handling, and packaging of food products. Moreover, steel billets are essential in the production of storage tanks and containers, which are crucial for the safe and hygienic storage of food ingredients and finished products. These tanks are typically made of stainless steel, known for its resistance to corrosion, durability, and ease of cleaning. Consequently, food remains uncontaminated and of high quality. Furthermore, steel billets contribute to the construction of infrastructure in the food processing industry. They are utilized in the construction of food processing plants, warehouses, and cold storage facilities. These structures provide the necessary conditions for food processing, such as temperature control and proper ventilation, ensuring food safety and preservation. In addition, steel billets are indispensable for the transportation of food products. They are employed in the manufacturing of shipping containers, refrigerated trucks, and railway cars, which enable efficient and safe transportation of food from one location to another. The strength and durability of steel ensure the protection of food products during transit, preventing spoilage and contamination. Overall, steel billets are vital components in the food processing industry, contributing to the manufacturing of machinery, storage containers, infrastructure, and transportation systems. Their properties, including strength, durability, and resistance to corrosion, make them ideal for ensuring food safety, quality, and efficiency at all stages of food processing.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords