• Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 1
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 2
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 3
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 4
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 5
  • Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi System 6
Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Specification

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products.

CNBM Q235,Q275,Q345,3SP,5SP,20MnSi Billets Steel

Hot Rolled Steel Billets/ Mild Steel Bar/ Billet Steel

Specification (see below)

Standard: GB/JIS/ASTM

Size: 50*50mm-180*180mm

Length: 3-12mtrs or Customised

Steel material: Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Technique: Hot rolled

FOB Unit Ton Price $250-350 and Usually I will quote you CFR price.

MOQ: Usually 1000-10000MT/size

Shipment:By Container,Bulk Vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: Usually within 30 days after the deposit/LC

Inspection:Third party inspection before loading.

Technical data

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Feature Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.


Packaging & Shipping

1. Packaging:

1) Small size: in bundles

2)Big size: in bulk

3)in plastic packing or as per customer requirement

2. Delivery time:

1) Normal size: within 7days send from warehouse directly

2) Special size: with 25-30days customer made for you

3. Trade terms:FOB/CFR/CIF

4. Shippment: 

1) length:≤5.8m loaded in 20FT Container with 25-27tons

2) length:≤11.8m loaded in 40FT Container with 25-27tons

3) lengnth:≥12m shipped by bulk vessel, FILO terms

Steel Billet Images

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Processing

Billet Steel Producers Q235,Q255,Q275,Q345,3SP,5SP,20MnSi

Usage-Billet Steel

 Used for the plant, the bridge,shipment building high-rise building construction,lifting and transportation machinery, equipment manufracturing base building the support foundation pile manufacturing.

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.

 

FAQ-Billet Steel

We have organized several common questions for our clients,may help you sincerely: 

1) How about your company?

 A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

2) How to guarantee the quality of the products?

 We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

3) How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

4)Do you have your own QC department?

 Yes, we have, our QC department will inspect the goods during the process of mass production and after completion of production.

hot sale!!! Cast Steel Grades/ mild steel bar/ billet steel        

(1): High quality steel with reasonable price. 
(2): Wide excellent experiences with after-sale service. 
(3): Every process will be checked by responsible QC which insures every product's quality.
(4): Professional packing teams which keep every packing safely. 
(5): Trial order can be done in one week. 
(6): Samples can be provided as your requirements. 

Q: What are the specifications for alloy steel billets used in the aerospace industry?
The specifications for alloy steel billets used in the aerospace industry typically include specific chemical composition requirements, such as precise percentages of various alloying elements, to ensure desired mechanical properties and performance. These billets often need to meet stringent standards for strength, durability, and resistance to fatigue and corrosion. Additionally, they may need to adhere to specific dimensional tolerances, surface finish requirements, and undergo various testing and inspection procedures to ensure their suitability for aerospace applications.
Q: How are steel billets inspected for internal defects?
Steel billets are inspected for internal defects using various non-destructive testing (NDT) techniques. One common method is ultrasonic testing (UT), where high-frequency sound waves are used to detect defects inside the billet. A transducer sends ultrasonic waves into the billet, and the reflected waves are analyzed to identify any internal flaws. UT is capable of detecting defects such as cracks, voids, inclusions, and other discontinuities. Another method employed is magnetic particle inspection (MPI). This technique is particularly useful for detecting surface and near-surface defects in ferromagnetic materials like steel. A magnetic field is applied to the billet, and iron particles are spread over the surface. If there is a defect, the magnetic field will cause the particles to form visible indications, providing a clear indication of any internal flaws. Liquid penetrant testing (PT) is another widely used method for inspecting steel billets. In this process, a liquid dye is applied to the surface of the billet and allowed to penetrate any surface-breaking defects. After a specified time, excess dye is removed, and a developer is applied. The developer draws out the penetrant from any defects, making them visible under proper lighting conditions. Additionally, radiographic testing (RT) can be employed to detect internal defects in steel billets. This method uses X-rays or gamma rays to capture images of the billet's internal structure. The radiation passes through the billet, and a film or digital detector records the transmitted radiation. Any internal defects will appear as shadows on the image, allowing for their identification. Overall, a combination of these NDT techniques is often used to ensure thorough inspection of steel billets for internal defects. This helps maintain the quality and integrity of the billets, ensuring they meet the required specifications and standards.
Q: How are steel billets used in the production of railway wheels?
Steel billets are an indispensable element for manufacturing railway wheels. These billets, which are essentially semi-finished forms of steel, serve as the initial stage of the production process. To begin the production of railway wheels, the steel billets are subjected to high temperatures in a furnace. This heating process, known as hot rolling, enhances the steel's malleability and ductility, making it easier to shape. Once the billets have reached the desired temperature, they undergo a series of rolling operations. These operations gradually shape the billets into the required size and form for railway wheels. High pressure is applied to the billets during this rolling process, causing them to elongate and take on the desired shape. After the rolling process, the shaped billets undergo further processing to eliminate any excess material and refine the surface finish. This step ensures that the final product meets all the necessary specifications for railway wheels. Lastly, the shaped billets are sent for additional machining, where they are turned, drilled, and finished to create the final railway wheel. This machining process is essential in achieving the required dimensions, balance, and surface quality needed for safe and efficient operation. In conclusion, steel billets play a vital role in the production of railway wheels. They are heated, rolled, shaped, and further processed to create the essential components for the final product. Without steel billets, the production of railway wheels would not be feasible.
Q: How do steel billets contribute to the overall recyclability of a product?
Steel billets contribute to the overall recyclability of a product by being a primary raw material in steel production. When a product made of steel reaches the end of its life cycle, it can be recycled and transformed into new steel products using steel billets. This reduces the need for extracting and refining new raw materials, conserves energy, and minimizes waste, making the overall recycling process more efficient and sustainable.
Q: What types of steel are commonly used for billets?
There are several types of steel that are commonly used for billets, depending on the specific application and desired properties. One common type is carbon steel, which is an alloy of iron and carbon. Carbon steel billets are widely used because of their high strength, durability, and affordability. They are suitable for a variety of applications, including construction, automotive, and machinery industries. Another type of steel used for billets is alloy steel. Alloy steel billets are made by adding various alloying elements such as chromium, nickel, and molybdenum to carbon steel. These alloying elements enhance the strength, toughness, and corrosion resistance of the steel, making it suitable for more demanding applications like aerospace, oil and gas, and power generation. Stainless steel is also commonly used for billets, especially in applications where corrosion resistance is critical, such as in marine environments or food processing industries. Stainless steel billets are made by adding chromium and sometimes other elements like nickel or molybdenum to carbon steel. This combination of elements provides excellent resistance to corrosion, high temperatures, and chemicals. Finally, tool steel is another type of steel used for billets, primarily in the manufacturing of tools and dies. Tool steel billets are made with specific alloying elements like tungsten, vanadium, or cobalt, which give them exceptional hardness, wear resistance, and heat resistance properties. These billets are essential for producing precision tools and components used in industries such as automotive, aerospace, and manufacturing. In summary, the types of steel commonly used for billets include carbon steel, alloy steel, stainless steel, and tool steel. The choice of steel depends on the specific application requirements, such as strength, corrosion resistance, or hardness.
Q: Can steel billets be heat treated for increased hardness?
Indeed, it is possible to enhance the hardness of steel billets through heat treatment. The process involves subjecting the steel billets to a particular temperature and subsequently cooling them at a rapid or gradual pace, depending on the desired hardness. This procedure is commonly employed to enhance the mechanical properties of steel, including hardness, strength, and resistance to wear. Several heat treatment methods exist that can be utilized to augment the hardness of steel billets. One prevalent technique is referred to as quenching and tempering. During this process, the steel billets are heated to a high temperature, typically surpassing their critical temperature, and promptly cooled by immersing them in a fluid medium, like oil or water. The rapid cooling induces the steel to harden. However, the steel may become excessively brittle in this state, necessitating tempering by reheating it to a lower temperature. This tempering process mitigates brittleness and heightens the toughness of the steel while preserving its hardness. Another heat treatment method that can be employed to enhance hardness is called case hardening. This technique entails altering the composition of the steel surface to establish a hardened outer layer while maintaining a softer core. Case hardening is typically accomplished by introducing carbon or nitrogen into the surface of the steel billets through processes like carburizing or nitriding. Subsequently, the steel billets are heated to a specific temperature and held for a designated period, permitting the carbon or nitrogen to permeate the steel. This engenders a hardened surface layer, endowing the steel with increased hardness and wear resistance while upholding the core's toughness. In summary, heat treatment can be employed to heighten the hardness of steel billets. The specific heat treatment method chosen will rely on the desired level of hardness, along with other mechanical properties necessary for the steel's intended application.
Q: Are steel billets recyclable?
Yes, steel billets are recyclable.
Q: What is the size and shape of steel billets?
Steel billets come in various sizes and shapes, depending on the specific requirements of the manufacturing process. Typically, steel billets are rectangular or square in shape, with dimensions ranging from a few inches to several feet in length, width, and height. The exact size and shape of steel billets are determined by factors such as the type of steel being produced and the intended use of the billets in subsequent manufacturing processes.
Q: How are steel billets made?
The process of making steel billets is known as casting. It begins by melting raw materials like iron ore, coal, and limestone in a blast furnace until they become molten iron. This molten iron is then further purified in either a basic oxygen furnace or an electric arc furnace to adjust its composition and remove impurities. Once the desired composition is achieved, the molten iron is poured into a continuous casting machine. This machine contains a copper mold that is cooled by water, which shapes the molten iron into a solid billet. As the molten iron is poured into the mold, it cools rapidly and solidifies, creating a continuous length of solid steel. The billet is then cut to the desired length and moved to a storage area to cool down even more before undergoing further processing. The cooling process is vital as it helps improve the internal structure and overall quality of the billet. After cooling, the steel billets can undergo various treatments, such as heat treatment or surface conditioning, to enhance their mechanical properties and surface finish. They can also be processed further into different shapes and sizes through methods like rolling, forging, or extrusion to meet specific requirements of customers. In summary, the production of steel billets involves melting the raw materials, purifying the molten iron, casting it into a continuous mold, and subsequently cooling and processing the solid billets. This process guarantees the production of high-quality steel billets that are essential components for industries such as construction, automotive, and manufacturing.
Q: How are steel billets used in the construction of bridges?
Due to their exceptional strength and durability, steel billets play a crucial role in bridge construction. These cylindrical pieces of raw steel are heated and shaped into various structural components, such as beams, columns, and girders, which serve as the foundation of bridge structures. The initial step in utilizing steel billets for bridge construction involves heating them in a furnace to make them malleable. Once the desired temperature is reached, the billets are passed through a series of rollers to shape them into the required sections. This process, referred to as hot rolling, guarantees that the steel achieves the necessary strength and structural integrity. Following this, the shaped steel billets undergo further processing and fabrication to form different bridge components. For example, beams are created by cutting and welding steel billets together to form long, horizontal members that bear the weight of the bridge deck. These beams are designed to withstand heavy loads and provide stability to the entire structure. On the other hand, columns are vertical members that transfer the load from the bridge deck to the foundations. Steel billets are shaped and joined together to construct these load-bearing columns, ensuring they possess the required strength to endure compression forces. Girders also play a vital role in bridge construction, serving as horizontal supports that span across the width of the bridge. Steel billets are shaped into girders, which are then fabricated and connected to the bridge's piers or abutments. These girders provide the necessary strength to evenly distribute the weight of the bridge deck. Aside from their strength, steel billets offer several advantages in bridge construction. They possess a high resistance to corrosion, guaranteeing the durability and longevity of the bridge structure. Additionally, steel billets are highly versatile, allowing engineers to create various shapes and sizes, enabling the design of bridges that meet specific project requirements. Overall, steel billets are extensively utilized in bridge construction due to their strength, durability, and versatility. They form the foundation of bridge structures, providing the necessary support and stability to ensure the safe and efficient transportation of people and goods.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords