• Monolithic Refractories for Iron and Steel Industry:Alumina Spinel Castable for Ladle and Tundish System 1
  • Monolithic Refractories for Iron and Steel Industry:Alumina Spinel Castable for Ladle and Tundish System 2
  • Monolithic Refractories for Iron and Steel Industry:Alumina Spinel Castable for Ladle and Tundish System 3
Monolithic Refractories for Iron and Steel Industry:Alumina Spinel Castable for Ladle and Tundish

Monolithic Refractories for Iron and Steel Industry:Alumina Spinel Castable for Ladle and Tundish

Ref Price:
$1,312.11 - 1,603.69 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
2 m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

General Information of Alumina Spinel Castable for Ladle and Tundish 
FIREF alumina spinel castable for ladle and tundish made as per international standards, is known for its excellent corrosion resistance, long operating life and high refractoriness. Further, it can be provided in different specifications as required.

 

Technical data of Alumina Spinel Castable for Ladle and Tundish

 

datasheet

Production line and packing of Alumina Spinel Castable for Ladle and Tundish

 

production line of Alumina Spinel Castable for Ladle and Tundish

 

 packing of Alumina Spinel Castable for Ladle and Tundish

Feature of Alumina Spinel Castable for Ladle and Tundish
Long operating life
Excellent corrosion resistance
High refractoriness

 

Application of Alumina Spinel Castable for Ladle and Tundish 
FIREF alumina spinel castable for ladle and tundish can be used widely in ladle and tundish.

Q:How are monolithic refractories different from traditional brick refractories?
Monolithic refractories differ from traditional brick refractories in terms of their composition and application method. While traditional brick refractories are made from individual bricks that are shaped and arranged to form a structure, monolithic refractories are a single, seamless material that is applied in a liquid or semi-liquid form and then cured or dried to form a solid mass. This allows monolithic refractories to be more versatile in terms of application, as they can be easily poured, sprayed, or troweled into complex shapes and installations. Additionally, monolithic refractories often offer better thermal insulation, higher resistance to thermal shock, and improved mechanical strength compared to traditional brick refractories.
Q:How do monolithic refractories contribute to the overall efficiency of ladle transfer processes?
Monolithic refractories play a crucial role in enhancing the overall efficiency of ladle transfer processes. These refractories are made of a single, homogeneous material, which allows for easy installation and maintenance. This feature significantly reduces downtime during the ladle transfer process, resulting in increased productivity. One way monolithic refractories contribute to efficiency is through their high thermal conductivity. Ladle transfer processes involve the transfer of molten metal, which generates immense heat. Monolithic refractories have excellent heat resistance, ensuring that they can withstand the extreme temperatures of the molten metal. This property prevents refractory failure and prolongs the lifespan of the ladle, leading to more efficient and uninterrupted ladle transfer operations. Additionally, monolithic refractories offer superior corrosion resistance. The corrosive nature of molten metal can cause significant damage to ladles over time. However, monolithic refractories are designed to withstand chemical attacks from molten metal, preventing the degradation of the ladle's integrity. As a result, ladles lined with monolithic refractories have a longer lifespan and require less frequent replacement, leading to cost savings and improved efficiency. Furthermore, the ability of monolithic refractories to conform to complex shapes and designs is another contributing factor to the efficiency of ladle transfer processes. Ladles come in various sizes and shapes, and the use of monolithic refractories allows for customized linings that perfectly fit the ladle's dimensions. This precise fit minimizes heat loss and maximizes energy efficiency during ladle transfer processes. Moreover, monolithic refractories offer excellent mechanical strength and resistance to thermal shock. Ladle transfer processes involve the handling and movement of ladles, which can subject refractories to mechanical stresses. The outstanding mechanical properties of monolithic refractories ensure their durability and prevent cracking or spalling, reducing the risk of refractory failure and improving the efficiency of ladle transfer operations. In summary, monolithic refractories contribute to the overall efficiency of ladle transfer processes by providing high thermal conductivity, corrosion resistance, precise lining fit, and excellent mechanical properties. These refractories enhance the ladle's durability, reduce downtime, and improve energy efficiency, resulting in cost savings and increased productivity in the steelmaking industry.
Q:How do monolithic refractories withstand thermal cycling in the iron and steel industry?
Monolithic refractories withstand thermal cycling in the iron and steel industry through their unique properties and composition. These refractories are made from a single piece or mass, which eliminates joints and weak points that could be susceptible to thermal stress. Additionally, their high thermal conductivity and low thermal expansion help them absorb and distribute heat evenly, reducing the risk of cracking or damage during rapid temperature changes. The use of advanced bonding agents further enhances their durability and resistance to thermal cycling, allowing them to withstand the extreme conditions of the iron and steel industry.
Q:How do monolithic refractories protect lining in ladles and tundishes?
Monolithic refractories protect lining in ladles and tundishes by forming a strong and durable barrier against the harsh conditions of high temperatures, thermal shock, and chemical corrosion. They are designed to withstand the extreme heat and mechanical stresses that occur during metal pouring and handling, ensuring the integrity and longevity of the lining. Additionally, monolithic refractories provide excellent insulation properties, reducing heat loss and conserving energy in the ladles and tundishes.
Q:How do monolithic refractories withstand the thermal cycling in aluminum smelting applications?
Monolithic refractories are able to withstand the thermal cycling in aluminum smelting applications due to their unique properties and design. These refractories are composed of a single, homogenous material without any joints or seams, which eliminates weak points that could be susceptible to thermal stress. Additionally, they have excellent thermal shock resistance and low thermal conductivity, allowing them to effectively handle the rapid temperature changes that occur during aluminum smelting processes. The monolithic refractories also have high refractoriness and chemical stability, enabling them to endure the harsh and corrosive conditions in aluminum smelting environments without significant degradation. Overall, the combination of these attributes allows monolithic refractories to withstand the extreme thermal cycling involved in aluminum smelting applications.
Q:What are the key differences between acidic and basic monolithic refractories?
The key differences between acidic and basic monolithic refractories lie in their chemical compositions and their behavior in different environments. Acidic monolithic refractories are primarily composed of acidic oxides such as silica (SiO2) or alumina (Al2O3). These materials have a high resistance to acidic environments and are commonly used in industries where they come into contact with acidic gases or liquids. Acidic refractories are characterized by their ability to withstand high temperatures and resist chemical erosion. They are generally not suitable for use in basic or alkaline conditions, as they can react with basic compounds and lose their effectiveness. On the other hand, basic monolithic refractories are composed of basic oxides such as magnesia (MgO) or dolomite (MgO-CaO). These materials have a high resistance to basic or alkaline environments and are commonly used in industries where they come into contact with basic compounds such as lime or cement. Basic refractories are characterized by their ability to withstand high temperatures and resist chemical erosion from basic compounds. They are generally not suitable for use in acidic conditions, as they can react with acidic compounds and lose their effectiveness. In terms of their physical properties, acidic monolithic refractories tend to have higher melting points and better thermal shock resistance compared to basic monolithic refractories. This is due to the higher melting points of acidic oxides and their ability to form stable silicate or aluminate structures at high temperatures. On the other hand, basic monolithic refractories generally have higher density and better resistance to penetration by molten materials. In conclusion, the key differences between acidic and basic monolithic refractories lie in their chemical compositions and their behavior in different environments. Acidic refractories are suitable for acidic conditions, have higher melting points, and better thermal shock resistance, while basic refractories are suitable for basic conditions, have higher density, and better resistance to penetration by molten materials.
Q:How do monolithic refractories improve the efficiency of ladle and tundish lining systems?
Monolithic refractories improve the efficiency of ladle and tundish lining systems by providing superior thermal insulation, excellent resistance to thermal shock, and higher mechanical strength compared to traditional brick or castable linings. This results in reduced heat loss, improved temperature control, and increased refractory life, ultimately leading to higher productivity and cost savings in steelmaking operations.
Q:What are the main causes of monolithic refractory failure in the iron and steel industry?
Monolithic refractory failure in the iron and steel industry can be attributed to various causes. Thermal cycling stands out as one of the primary factors. The extreme temperatures encountered during iron and steel manufacturing, including melting, casting, and heat treating, expose the refractory lining to significant thermal stress. This repetitive expansion and contraction of the material can lead to cracking, spalling, or even complete disintegration of the refractory. Chemical attack is another common cause of failure. The iron and steel industry utilizes different chemicals, such as molten metal, slag, and gases, which can react with the refractory lining. This chemical interaction can result in erosion, corrosion, or chemical decomposition of the refractory material, ultimately causing failure over time. Mechanical stress also plays a significant role in monolithic refractory failure. The heavy machinery and equipment employed in iron and steel production produce vibrations, shocks, and impacts that can weaken or damage the refractory lining. Additionally, improper installation or design can create stress concentration points, making the refractory more susceptible to failure. Furthermore, refractory failure can be attributed to improper maintenance and operational practices. Inadequate cooling or heating procedures, improper drying and curing of the refractory, and insufficient cleaning and inspection can all affect the longevity and performance of the material. Neglecting regular maintenance and timely repairs can exacerbate minor issues, eventually leading to more significant failures. Lastly, the choice and quality of refractory material are crucial factors in failure. Opting for an unsuitable refractory for a specific application or using low-quality materials can result in premature failure. Considering factors such as temperature range, chemical exposure, and mechanical stress is essential when selecting the refractory lining to ensure its suitability and durability in the iron and steel industry. To summarize, the main causes of monolithic refractory failure in the iron and steel industry include thermal cycling, chemical attack, mechanical stress, improper maintenance and operational practices, and the choice and quality of refractory material. Addressing these factors through proper installation, regular maintenance, and careful material selection can help mitigate refractory failures and enhance the overall efficiency and productivity of iron and steel production processes.
Q:What are the advantages of using low-cement castables in the iron and steel industry?
There are several advantages of using low-cement castables in the iron and steel industry. Firstly, low-cement castables have a lower water requirement compared to conventional castables. This means that less water is needed during the installation process, resulting in a quicker and more efficient installation. Additionally, low water content leads to better strength development and reduced drying time, allowing for faster turnaround times in the production process. Secondly, low-cement castables offer superior resistance to thermal shocks and high temperatures. The iron and steel industry operates at extremely high temperatures, and low-cement castables have excellent refractory properties that can withstand these harsh conditions. This ensures a longer service life for the refractory lining and reduces the need for frequent repairs or replacements. Furthermore, low-cement castables exhibit excellent mechanical strength and abrasion resistance. The iron and steel industry involves the handling of heavy materials and abrasive substances, which can cause wear and tear on the refractory lining. Low-cement castables have the ability to withstand these mechanical stresses, thereby increasing the durability and longevity of the lining. Moreover, low-cement castables have a low porosity and high density, which results in reduced permeability. This makes them highly resistant to alkali attacks, chemical corrosion, and slag penetration, which are common challenges faced in the iron and steel industry. By using low-cement castables, the risk of refractory failure due to these corrosive elements is minimized. Lastly, low-cement castables offer improved energy efficiency. Their lower thermal conductivity means that less heat is conducted through the refractory lining, resulting in reduced heat losses. This leads to energy savings, as less heat is wasted and more heat is retained in the system. This is particularly advantageous in the iron and steel industry, where energy costs can be significant. In summary, the advantages of using low-cement castables in the iron and steel industry include reduced water requirement, superior thermal resistance, enhanced mechanical strength, improved resistance to chemical corrosion, and increased energy efficiency. These benefits contribute to overall cost savings, increased productivity, and improved operational performance in the iron and steel manufacturing process.
Q:How do monolithic refractories contribute to the reduction of heat loss in ladles and tundishes?
Monolithic refractories contribute to the reduction of heat loss in ladles and tundishes by providing a continuous and seamless lining that minimizes thermal bridging and heat transfer. Unlike traditional brick refractories, monolithic refractories eliminate joints and gaps, preventing heat from escaping through these openings. Additionally, their high thermal conductivity and insulation properties ensure efficient heat containment within the ladles and tundishes, reducing energy loss and improving overall thermal performance.
Our products are mainly mullite brick, high alimina brick acid-resistant refractory brick, phosphate abrasive brick and andalusite brick, with annual output of 20000 tons heavy refractory, the tunnel kiln with 80m in length is mainly for manufacturing of top quality refractory, such as corundum products, alumina products and spinel products. In order to promote sustainable development, we will insist on scientific development.

1. Manufacturer Overview

Location Henan, China
Year Established 2007
Annual Output Value Above US$ 60 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Tianjin
Export Percentage 31% - 50%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b)Factory Information  
Factory Size: Above 36,000 square meters
No. of Production Lines Above 5
Contract Manufacturing OEM Service Offered
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords