• Refractory Precast Shapes For EAF Roof System 1
  • Refractory Precast Shapes For EAF Roof System 2
  • Refractory Precast Shapes For EAF Roof System 3
Refractory Precast Shapes For EAF Roof

Refractory Precast Shapes For EAF Roof

Ref Price:
$1,262.61 - 1,543.19 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
2 MT m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

General Information of Refractory Precast Shapes For EAF Roof 
Made as per international standards, FIREF refractory pre-cast shapes for EAF roof is known for its excellent corrosion and scouring resistance of iron steel, long operating life and easy execution and mending. Further, the sizes could be customed.


Technical data of Refractory Precast Shapes For EAF Roof 

Item

Refractory Precast Shapes For EAF Roof

Al2O3(%)≥

82

MgO(%)≥

CaO(%)≤

2

SiO2(%)≤

Fe2O3(%)≥

Cr2O3

Bulk Density g/cm3

110×24h

2.9

1600×3h

C.C.S. (MPa)≥

110×24h

30

1600×3h

M.O.R.(MPa)≥

110×24h

6

1600×3h

Grain Size Distribution (%)

Heavy Burn Line Rate(1300×3h)(%)


Mould and Test Room of Refractory Precast Shapes For EAF Roof


Feature of Refractory Precast Shapes For EAF Roof
Excellent corrosion and scouring resistance of iron steel
Easy execution and mending

 

Application of Refractory Precast Shapes For EAF Roof
 
FIREF refractory pre-cast shapes for EAF roof can be used for in situ casting or pre-casting for tri-angle area of UHP EAF roof.

 

Q: What are the specific requirements of monolithic refractories for blast furnace applications?
Monolithic refractories used in blast furnace applications have specific requirements to withstand the harsh conditions and high temperatures within the furnace. Some of these requirements include: 1. Thermal stability: Monolithic refractories need to have excellent thermal stability to withstand the extreme temperatures encountered in blast furnaces. They should resist thermal shock and maintain their physical and chemical properties at high temperatures. 2. High strength: Blast furnace conditions exert significant pressure and mechanical stress on refractory linings. Therefore, monolithic refractories need to have high strength and resistance to mechanical wear to withstand the weight of the burden and the movement of materials inside the furnace. 3. Chemical resistance: Blast furnace environments are highly corrosive due to the presence of molten metals, slag, and gases. Monolithic refractories should exhibit excellent chemical resistance to prevent chemical reactions with the molten material and gases, which can lead to refractory degradation. 4. Erosion and abrasion resistance: The materials being processed in a blast furnace can cause erosion and abrasion, leading to wear of the refractory lining. Monolithic refractories used in blast furnaces should be able to withstand these erosive and abrasive forces to ensure a longer service life. 5. Low porosity: Blast furnace refractories should have low porosity to minimize the penetration of molten materials and gases, which can cause refractory spalling and damage. Low porosity also helps in maintaining the thermal stability and overall performance of the refractory lining. 6. Dense structure: The refractory lining in a blast furnace should have a dense structure to prevent the penetration of molten slag and metal into the lining, which can cause refractory failure. A dense structure also aids in the refractory's heat insulation properties. 7. Easy installation: Blast furnace refractories need to be easily installed and repaired due to the frequent maintenance and repair requirements of blast furnaces. Monolithic refractories offer the advantage of easy installation, as they can be cast, gunned, or sprayed onto the refractory surface, allowing for quick repairs and reduced downtime. Overall, the specific requirements of monolithic refractories for blast furnace applications include thermal stability, high strength, chemical resistance, erosion and abrasion resistance, low porosity, dense structure, and easy installation. Meeting these requirements ensures the durability and efficiency of the refractory lining, leading to improved blast furnace performance.
Q: How are monolithic refractories used in the repair and maintenance of ladles and tundishes?
The steel industry extensively utilizes monolithic refractories for the repair and maintenance of ladles and tundishes. These refractories are specifically designed to endure the extreme conditions encountered during the steelmaking process, including high temperatures, thermal shock, and chemical erosion. In the case of ladle repair, monolithic refractories are employed to line the inner walls. Ladles are exposed to intense heat and corrosive molten metal, and the refractory lining serves as insulation and protection against these harsh circumstances. Additionally, the lining helps to maintain the desired temperature of the molten metal, ensuring it remains in an appropriate state for processing. Regarding tundishes, monolithic refractories are used to line the bottom, sides, nozzle, and impact pad. Tundishes are responsible for distributing molten metal to multiple casting molds and are subject to high temperatures and thermal shocks. The refractory lining helps to sustain the necessary temperature and prevent any leakage of molten metal. During the repair and maintenance process, monolithic refractories are applied as dense, high-strength materials that are easy to shape and install. They can be formed into various shapes, such as bricks, castables, and gunning mixes, depending on the specific requirements of the ladle or tundish. These refractories are frequently applied using specialized techniques, such as gunning or casting, to ensure proper adhesion and durability. In addition to their thermal and chemical resistance properties, monolithic refractories also possess excellent mechanical strength and resistance to abrasion. This is particularly crucial in ladles and tundishes, as they experience constant wear and tear from the movement of molten metal and the handling of refractory materials during repair and maintenance. Overall, monolithic refractories play a vital role in the repair and maintenance of ladles and tundishes in the steel industry. They provide the necessary insulation, protection, and durability required to withstand the demanding conditions of steelmaking.
Q: How do monolithic refractories perform in reheating furnace applications?
Monolithic refractories perform exceptionally well in reheating furnace applications due to their excellent thermal shock resistance, high temperature stability, and superior insulation properties. They are able to withstand the extreme temperatures and rapid temperature changes that occur during the reheating process, ensuring consistent and efficient heat distribution. Additionally, their flexible and easy-to-install nature makes them an ideal choice for lining the complex geometries of reheating furnaces, resulting in improved performance and extended service life.
Q: How do monolithic refractories prevent slag penetration?
Slag penetration is effectively prevented by monolithic refractories due to several mechanisms. Firstly, the high-quality materials used in monolithic refractories, such as alumina, silica, and magnesia, possess exceptional resistance to slag attack. These materials have a high melting point and can endure the corrosive nature of the slag. Secondly, the design of monolithic refractories incorporates a dense and compact structure that minimizes porosity. Slag penetration occurs when the molten slag infiltrates the pores and cracks of the refractory material. By reducing porosity, monolithic refractories create a barrier that restricts the entry of slag into the refractory lining. Furthermore, monolithic refractories can be chemically bonded to the substrate, resulting in a strong and impermeable bond. This bond enhances resistance to slag penetration by eliminating any gaps or weak points through which the slag could seep. Moreover, monolithic refractories can possess a high thermal shock resistance. Slag penetration is often intensified by thermal cycling, wherein the refractory material undergoes rapid temperature changes. Monolithic refractories with high thermal shock resistance can endure these temperature fluctuations without cracking or spalling, therefore decreasing the risk of slag penetration. Additionally, the effective prevention of slag penetration relies on the proper installation and maintenance of monolithic refractories. The refractory lining must be appropriately designed, with the right thickness and geometry, in order to provide maximum protection against slag attack. Regular inspection and repair of any damaged or worn-out areas can also prevent slag penetration. In summary, monolithic refractories prevent slag penetration through their excellent resistance to slag attack, dense structure, chemical bonding, high thermal shock resistance, and proper installation and maintenance. By working together, these factors create a robust and impermeable barrier that safeguards the underlying substrate from the corrosive effects of slag.
Q: What types of monolithic refractories are commonly used in the iron and steel industry?
In the iron and steel industry, several types of monolithic refractories are commonly used due to their high resistance to extreme temperatures and mechanical stresses. These refractories are essential for lining furnaces, ladles, and other equipment used in the production of iron and steel. One commonly used monolithic refractory in this industry is castable refractory. It is a mixture of refractory aggregates, binders, and additives that can be poured or cast into various shapes and sizes. Castable refractories are versatile and can be easily installed, making them suitable for lining large furnaces and ladles. They offer good thermal insulation and excellent resistance to thermal shocks. Another type of monolithic refractory used in the iron and steel industry is plastic refractory. It consists of a high-alumina refractory aggregate mixed with a bonding agent, usually clay. Plastic refractories have a high plasticity and can be easily shaped by hand or with a trowel. They are commonly used for repairs and patching in furnaces and ladles. Ramming refractories are also commonly employed in the iron and steel industry. These refractories are made of granular refractory materials mixed with a binder. They are installed by ramming the mixture into the desired shape using a pneumatic hammer or manual ramming tools. Ramming refractories offer high resistance to abrasion and erosion, making them suitable for lining the bottoms of furnaces and other areas subjected to intense mechanical wear. Lastly, gunning refractories are frequently used in the iron and steel industry. Gunning refractories are made of fine refractory powders mixed with water or a bonding agent. They are applied using a gunning machine, which propels the refractory material onto the surface to be lined. Gunning refractories are commonly used for repairing and maintaining the linings of ladles, tundishes, and other equipment. Overall, the iron and steel industry relies on a variety of monolithic refractories such as castables, plastics, rammings, and gunnings to ensure the reliable and efficient operation of their equipment in high-temperature environments. These refractories provide excellent thermal insulation, resistance to thermal shocks, and mechanical strength essential for the production of iron and steel.
Q: What are the specific requirements of monolithic refractories for ladle purging applications?
Monolithic refractories used for ladle purging applications need to have specific requirements such as high thermal shock resistance, excellent erosion resistance, and good insulating properties. They should also have low porosity to prevent excessive penetration of slag or metal, high strength to withstand the mechanical stresses during purging, and good chemical stability to resist the corrosive environment of the ladle. Additionally, they should have good workability for ease of installation and repair.
Q: What are some common maintenance practices for monolithic refractories in iron and steel furnaces?
Some common maintenance practices for monolithic refractories in iron and steel furnaces include regular inspection and monitoring of the refractory lining for any signs of wear, damage, or erosion. This can be done through visual examinations, thermal imaging, or ultrasonic testing. Additionally, repairing and patching any damaged areas promptly is crucial to prevent further deterioration. Other practices include proper curing, preheating, and controlled cooling of the refractories to ensure their optimal performance and longevity. Regular cleaning to remove any slag, buildup, or debris is also important to reduce the risk of blockages or hotspots. Lastly, following manufacturer guidelines and recommendations for installation, usage, and maintenance is essential for effectively managing and prolonging the lifespan of monolithic refractories in iron and steel furnaces.
Q: What are the latest advancements in monolithic refractories for the iron and steel industry?
Some of the latest advancements in monolithic refractories for the iron and steel industry include the development of high-performance materials with enhanced thermal shock resistance, improved corrosion resistance, and increased durability. These advancements have been achieved through the incorporation of advanced additives and binders, as well as the utilization of new manufacturing techniques such as spray drying and rapid heat curing. Additionally, there have been advancements in the design of monolithic refractory shapes and installation techniques to optimize their performance and increase their lifespan in the demanding environments of the iron and steel industry.
Q: How do monolithic refractories improve the performance of ladles and tundishes?
The performance of ladles and tundishes is significantly improved by monolithic refractories in various ways. Firstly, these vessels are thermally insulated by monolithic refractories, which act as a barrier against heat loss and help maintain the desired temperature. This insulation reduces energy consumption and minimizes heat loss. Secondly, monolithic refractories offer excellent resistance to chemical corrosion and erosion. When ladles and tundishes come into contact with molten metal and fluxes, they can be severely corroded and eroded. However, the use of monolithic refractories protects against chemical attacks and extends the lifespan of these vessels. This saves costs associated with frequent repairs or replacements and ensures their integrity and safety. Furthermore, monolithic refractories provide superior mechanical strength and structural stability. Ladles and tundishes must withstand the weight of molten metal and the stresses caused during pouring and handling. With high mechanical strength, monolithic refractories can withstand these loads, maintaining their shape and integrity. This reduces downtime and increases productivity in the steelmaking process. Moreover, monolithic refractories offer flexibility in design and installation. They can be shaped and applied in various configurations, allowing customization to meet the specific requirements of ladles and tundishes. This flexibility ensures a better fit and improves the overall efficiency of the refractories, ultimately enhancing the performance of the vessels. In conclusion, monolithic refractories enhance the performance of ladles and tundishes by providing improved thermal insulation, resistance to chemical corrosion and erosion, increased mechanical strength, and flexibility in design and installation. These benefits contribute to the longevity, efficiency, and cost-effectiveness of ladles and tundishes in steelmaking operations.
Q: How do monolithic refractories provide thermal insulation in the iron and steel industry?
The iron and steel industry heavily relies on monolithic refractories for thermal insulation. These refractories are extensively used to line furnaces and other high-temperature equipment involved in the production processes. Monolithic refractories excel in thermal insulation due to their ability to withstand extreme temperatures without degradation or melting. They are specifically designed to resist high heat, enabling their usage in environments with temperatures reaching several thousand degrees Celsius. By enduring such extreme conditions, these refractories effectively prevent heat transfer to the surrounding structure, thereby ensuring insulation. Another key aspect of monolithic refractories' thermal insulation is their low thermal conductivity. These materials possess a low thermal conductivity, rendering them inefficient in conducting heat. Instead, they trap heat within their structure and minimize its transfer to the surrounding equipment or environment. This characteristic is instrumental in maintaining optimal temperatures inside furnaces and other high-temperature equipment, enabling efficient and controlled metal production. Moreover, monolithic refractories can be applied as a thick lining layer, further establishing an additional barrier between the high-temperature environment and the surrounding equipment. The thickness of the refractory lining acts as a buffer, reducing heat transfer and mitigating the impact of high temperatures on the structural integrity of the equipment. In addition to providing thermal insulation, monolithic refractories also exhibit exceptional resistance to chemical attack and mechanical wear, which are common challenges in the iron and steel industry. This resistance ensures the longevity of the refractory lining, guaranteeing consistent and reliable insulation over time. In summary, monolithic refractories contribute to thermal insulation in the iron and steel industry through their high-temperature resistance, low thermal conductivity, thick lining layer, and resistance to chemical attack and mechanical wear. These properties effectively maintain the desired temperature inside equipment and safeguard the surrounding structure from the intense heat generated during metal production processes.
Our products are mainly mullite brick, high alimina brick acid-resistant refractory brick, phosphate abrasive brick and andalusite brick, with annual output of 20000 tons heavy refractory, the tunnel kiln with 80m in length is mainly for manufacturing of top quality refractory, such as corundum products, alumina products and spinel products. In order to promote sustainable development, we will insist on scientific development.

1. Manufacturer Overview

Location Henan, China
Year Established 2007
Annual Output Value Above US$ 60 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 31% - 50%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 36,000 square meters
No. of Production Lines Above 5
Contract Manufacturing OEM Service Offered
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords