Alumina-Spinel Castable for Ladle
- Loading Port:
- China Main Port
- Payment Terms:
- TT or L/C
- Min Order Qty:
- 2 MT m.t.
- Supply Capability:
- 5000 Tons Per Month m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
General Information of Alumina-Spinel Castable for Ladle
ALRE alumina-spinel castable for ladle made strictly as per international standards, is known for its long operating life, excellent corrosion resistance and high refractoriness.
Technical data of Alumina-Spinel Castable for Ladle
Item | Alumina spinel castable | ||||
Al2O3 | % | ≥ | 72 | ||
MgO | % | ≥ | 10 | ||
CaO | % | — | |||
SiO2 | % | ≤ | 9 | ||
SiO2+ Fe2O3+ Al2O3 | % | ≤ | |||
Bulk density ≥ | g/cm3 | — | |||
C.C.S. (MPa) ≥ | 110℃×24hrs | 90 | |||
1500℃×3hrs | 100 | ||||
M.O.R.(MPa) ≥ | 110℃×24hrs | 11.5 | |||
1500℃×3hrs | 11.5 | ||||
Refractoriness (℃) ≥ | — | ||||
Grain size (mm) ≤ | — | ||||
Permanent linear change | 1500℃×2hrs | -0.2~0.35 | |||
1500℃×3hrs | — | ||||
Life time (hr) | — |
Production line and Packing of Alumina-Spinel Castable for Ladle
Feature of Alumina-Spinel Castable for Ladle
Long operating life
Easy execution and mending
Excellent corrosion and scouring resistance of iron steel
Application of Alumina-Spinel Castable for Ladle
ALRE alumina-spinel castable could be used widely for lining of ladles in steel and iron industry.
- Q: How are monolithic refractories different from traditional brick refractories?
- Monolithic refractories differ from traditional brick refractories in several ways. Firstly, monolithic refractories are made from a single, homogeneous material, while traditional brick refractories are made from individual bricks that are assembled together. This difference in construction allows monolithic refractories to have a more uniform and consistent structure, which can enhance their performance and durability. Secondly, monolithic refractories are typically easier to install compared to traditional brick refractories. Since they are made from a single material, they can be poured or sprayed into place, eliminating the need for precise bricklaying and mortar application. This ease of installation saves time and labor during construction or repair projects. Additionally, monolithic refractories often have superior thermal shock resistance compared to traditional brick refractories. The homogeneous structure of monolithic refractories allows them to expand and contract more uniformly under thermal stress, reducing the risk of cracking and failure. This makes monolithic refractories more suitable for applications where rapid temperature changes occur, such as in furnaces or kilns. Furthermore, monolithic refractories can offer better resistance to chemical attacks and erosion. Traditional brick refractories may have joints and gaps between bricks, which can become vulnerable to chemical reactions or erosion over time. Monolithic refractories, on the other hand, have a seamless structure that minimizes the risk of chemical penetration and erosion, enhancing their longevity and performance. Overall, monolithic refractories offer advantages in terms of uniformity, ease of installation, thermal shock resistance, and chemical resistance compared to traditional brick refractories. These differences make monolithic refractories a preferred choice for many industrial applications where high temperatures and harsh environments are present.
- Q: What are the challenges faced in the application of monolithic refractories?
- There are several challenges faced in the application of monolithic refractories. Firstly, one of the major challenges is the proper installation of monolithic refractories. Unlike traditional brick refractories that can be easily laid and stacked, monolithic refractories require specialized skills and techniques for proper application. The consistency and workability of the refractory material must be carefully controlled, and the installation process often requires the use of specialized equipment such as gunning machines or vibrating tools. Another challenge is the selection of the appropriate monolithic refractory material for a specific application. There are various types of monolithic refractories available, each with its own unique properties and suitability for different environments. Choosing the wrong type of refractory material can result in premature failure and costly repairs. Therefore, it is essential to understand the operating conditions, such as temperature, chemical exposure, and mechanical stress, to select the most suitable monolithic refractory material. Additionally, monolithic refractories are susceptible to thermal shock and erosion due to their composition and application method. They are typically made from fine powders that are mixed with water or other binding agents to form a paste. This paste is then applied and dried to form a solid refractory lining. However, during the heating and cooling cycles, monolithic refractories can experience thermal expansion and contraction, leading to cracking and spalling. Moreover, the chemical reactions occurring in some industrial processes can cause chemical attack and erosion of the refractory lining, reducing its lifespan. Furthermore, maintenance and repair of monolithic refractories can also be challenging. Unlike brick refractories that can be easily replaced, repairing monolithic refractories often requires skilled personnel and specialized techniques. The damaged area needs to be removed, and a new layer of refractory material must be applied, ensuring proper bonding and compatibility with the existing lining. This process can be time-consuming and costly, particularly in high-temperature applications where extended downtime can result in significant production losses. In summary, the challenges faced in the application of monolithic refractories include proper installation techniques, selection of the appropriate material, susceptibility to thermal shock and erosion, and complex maintenance and repair procedures. Overcoming these challenges requires expertise, careful planning, and a thorough understanding of the specific operating conditions and requirements for each application.
- Q: How do monolithic refractories resist erosion from molten metals and slags?
- Monolithic refractories are designed to resist erosion from molten metals and slags through various mechanisms. Firstly, monolithic refractories are made from high-quality materials such as alumina, magnesia, and silica. These materials have excellent resistance to high temperatures and chemical attack, making them capable of withstanding the corrosive nature of molten metals and slags. Secondly, monolithic refractories have a dense structure that prevents the penetration of molten metals and slags. The dense matrix of the refractory material acts as a physical barrier, limiting the contact between the molten material and the refractory itself. Furthermore, monolithic refractories can also contain additives or binders that enhance their erosion resistance. These additives can include silicon carbide, graphite, or other materials that provide additional strength and resistance to erosion. In addition, monolithic refractories can be designed with specific shapes and features to minimize erosion. For example, the refractory lining in a furnace may be designed with curved shapes or baffles to redirect the flow of molten metals and slags, reducing their impact on the refractory surface. Overall, the combination of high-quality materials, dense structure, additives, and tailored designs allows monolithic refractories to effectively resist erosion from molten metals and slags. This resistance ensures the durability and longevity of refractory linings in industrial applications where high temperatures and corrosive environments are present.
- Q: How are monolithic refractories used in the repair and maintenance of ladles and tundishes?
- Monolithic refractories are extensively used in the repair and maintenance of ladles and tundishes in the steel industry. These refractories are specially designed to withstand the extreme conditions of high temperatures, thermal shock, and chemical erosion that occur during the steelmaking process. When it comes to the repair of ladles, monolithic refractories are used to line the inner walls of the ladle. Ladles are subjected to intense heat and corrosive molten metal, and the refractory lining provides insulation and protection against these harsh conditions. The lining also helps to maintain the desired temperature of the molten metal, ensuring that it remains in a suitable state for processing. In the case of tundishes, monolithic refractories are used to line the bottom and sides of the tundish, as well as the nozzle and impact pad. Tundishes are responsible for distributing molten metal to multiple casting molds and are exposed to high temperatures and thermal shocks. The refractory lining helps to maintain the necessary temperature and prevent any leakage of molten metal. During the repair and maintenance process, monolithic refractories are applied as a dense, high-strength material that is easy to shape and install. They can be shaped into various forms such as bricks, castables, and gunning mixes, depending on the specific requirements of the ladle or tundish. These refractories are often applied using specialized techniques, such as gunning or casting, to ensure proper adhesion and longevity. In addition to their thermal and chemical resistance properties, monolithic refractories also offer excellent mechanical strength and resistance to abrasion. This is crucial in ladles and tundishes, as they are subjected to constant wear and tear from the movement of molten metal and the handling of refractory materials during repair and maintenance. Overall, monolithic refractories play a critical role in the repair and maintenance of ladles and tundishes in the steel industry. They provide the necessary insulation, protection, and durability required to withstand the demanding conditions of steelmaking.
- Q: What are the environmental considerations associated with monolithic refractories?
- Monolithic refractories, which are used in various high-temperature applications, have several environmental considerations that need to be taken into account. Firstly, the production of monolithic refractories involves the use of raw materials such as clay, silica, and alumina, which are often mined from the earth. The extraction of these materials can result in habitat destruction, soil erosion, and water pollution. Additionally, the manufacturing process of monolithic refractories typically involves high-energy consumption and the release of greenhouse gases. The firing of refractory materials requires high temperatures, often achieved through the burning of fossil fuels, which contributes to carbon dioxide emissions and climate change. These emissions can have far-reaching environmental impacts, including air pollution, acid rain, and the depletion of the ozone layer. Furthermore, the disposal of monolithic refractories at the end of their useful life can also pose environmental challenges. While monolithic refractories are highly durable and long-lasting, there may come a point when they need to be replaced or repaired. The disposal of refractory waste can be problematic, as it often contains hazardous materials like chromium, lead, and asbestos. Improper disposal methods can lead to soil and water contamination, posing risks to human health and the environment. To address these environmental considerations, efforts are being made to develop more sustainable refractory materials and manufacturing processes. For instance, alternative raw materials like recycled refractory materials or industrial by-products can be used to reduce the environmental impact of mining. Furthermore, the adoption of more energy-efficient manufacturing techniques, such as utilizing renewable energy sources or implementing advanced firing technologies, can help to minimize greenhouse gas emissions. In conclusion, the environmental considerations associated with monolithic refractories include habitat destruction, energy consumption, greenhouse gas emissions, and waste disposal. It is crucial for the refractory industry to prioritize sustainability and adopt measures to mitigate these environmental impacts, such as using alternative raw materials, improving manufacturing processes, and promoting responsible waste management practices.
- Q: How do monolithic refractories contribute to energy efficiency in the iron and steel industry?
- Various mechanisms are employed by monolithic refractories to enhance energy efficiency in the iron and steel industry. The first mechanism is their exceptional thermal insulation properties, which minimize heat loss from furnaces and high-temperature equipment. This efficient utilization of heat generated during production leads to significant energy savings. Another important feature of monolithic refractories is their ability to withstand rapid temperature changes without cracking or spalling, known as thermal shock resistance. This quality is crucial in an industry where extreme temperature variations are common. By maintaining their structural integrity, these refractories prevent heat leakage and ensure effective energy utilization. Furthermore, monolithic refractories contribute to energy efficiency by reducing downtime and improving operational efficiency. Their easy installation and repair result in shorter maintenance cycles, minimizing the time required for furnace maintenance. This allows for continuous operation and uninterrupted energy utilization. Additionally, their high durability reduces the need for frequent replacements, further enhancing energy efficiency by reducing material and energy waste associated with regular repairs. In conclusion, monolithic refractories play a significant role in enhancing energy efficiency in the iron and steel industry. Their properties, such as thermal insulation, thermal shock resistance, and ease of installation and repair, ensure effective energy utilization and substantial energy savings. Improved operational efficiency and reduced downtime further contribute to overall energy efficiency.
- Q: How do monolithic refractories enhance the efficiency of reheating furnaces?
- Monolithic refractories enhance the efficiency of reheating furnaces by providing better thermal insulation, reducing heat loss, and improving the overall heat transfer within the furnace. These refractories have excellent resistance to high temperatures and thermal shock, allowing them to withstand extreme conditions for prolonged periods. By minimizing heat loss and maintaining a consistent temperature, they ensure that the reheating process is more energy-efficient, resulting in reduced fuel consumption and increased productivity.
- Q: Can monolithic refractories be used for the lining of reheating furnaces and walking beam furnaces?
- Yes, monolithic refractories can be used for the lining of reheating furnaces and walking beam furnaces. Monolithic refractories are versatile and can be shaped to fit the specific requirements of these furnaces. They offer excellent thermal insulation, high temperature resistance, and durability, making them suitable for withstanding the extreme conditions within these furnaces. Additionally, monolithic refractories can be easily installed, repaired, and replaced, making them a practical choice for lining these types of furnaces.
- Q: What are the advantages of using low-moisture castables in the iron and steel industry?
- Low-moisture castables offer numerous benefits to the iron and steel industry. Firstly, their lower water content results in shorter drying times, which is crucial in this fast-paced industry. This reduction in overall production time allows for quicker turnaround and increased efficiency. Secondly, low-moisture castables exhibit superior strength and durability when compared to traditional castables. They can withstand extreme temperatures and harsh environments without cracking or breaking. This resilience is essential in an industry marked by high heat and abrasion, ensuring that the castables maintain their structural integrity and endure demanding conditions. Additionally, low-moisture castables boast excellent thermal shock resistance. This means they can handle rapid temperature changes without experiencing cracks or spalling. In an industry that frequently relies on heating and cooling processes, this attribute is highly advantageous. Moreover, low-moisture castables possess a higher density than traditional castables, resulting in improved insulation properties and lower thermal conductivity. This insulation efficiency conserves energy and minimizes heat loss during various processes, ultimately leading to significant cost savings. Lastly, low-moisture castables offer versatility in their application. They can be utilized for various purposes in the iron and steel industry, serving as linings for ladles, furnaces, tundishes, and other high-temperature equipment. This versatility allows for greater flexibility in designing and constructing the necessary infrastructure for iron and steel production. In conclusion, the utilization of low-moisture castables in the iron and steel industry provides a range of advantages, including reduced drying time, increased strength and durability, enhanced thermal shock resistance, improved insulation properties, and versatile application possibilities. These benefits contribute to more efficient and cost-effective operations in this industry.
- Q: How are monolithic refractories installed and repaired in iron and steel production facilities?
- Monolithic refractories play a crucial role in iron and steel production facilities by offering insulation and protection against high temperatures, chemical corrosion, and mechanical wear. To install and repair these refractories, careful planning, expertise, and adherence to safety protocols are necessary. To begin installation, the surface must be prepared by eliminating loose material and cleaning the area thoroughly. This step guarantees proper adhesion of the refractory material and may also involve roughening or texturing the surface for better bonding. Next, a workable consistency is achieved by mixing the monolithic refractory material with water or a binder. The material is then applied to the prepared surface using techniques like casting, gunning, ramming, or troweling. The choice of application method depends on factors such as the type of refractory material, repair area, and desired outcome. During installation, it is vital to carefully follow the manufacturer's instructions regarding mixing ratios, curing times, and drying temperatures. Improper installation can result in reduced refractory performance, premature failure, and safety hazards. Repairing monolithic refractories in iron and steel production facilities is an ongoing process due to the harsh operating conditions and mechanical stresses they endure. It is crucial to promptly address any signs of damage or wear to prevent further deterioration. The first step in the repair process is to assess the extent of the damage. This can be achieved through visual inspection, thermal imaging, or non-destructive testing techniques. Once the damage is identified, the appropriate repair method can be determined. Minor repairs can often be accomplished using patching materials that have a composition similar to the original refractory. These materials are mixed with water or a binder to form a paste, which is then applied to the damaged area and allowed to cure. For more extensive repairs, the damaged refractory material may need to be completely removed using mechanical methods like chipping, grinding, or cutting. After removing the damaged material, the surface is prepared as mentioned earlier, and new refractory material is installed using the appropriate application method. It is important to note that the repair process should be carried out by trained personnel with expertise in refractory installation and repair. Safety precautions, such as wearing protective clothing, using proper tools, and following established procedures, should always be observed. In conclusion, the installation and repair of monolithic refractories in iron and steel production facilities necessitate careful planning, adherence to manufacturer's instructions, and expertise in refractory materials. By following proper procedures and promptly addressing any damage, these facilities can ensure the longevity and efficiency of their refractory linings, ultimately contributing to the smooth operation of their production processes.
1. Manufacturer Overview
Location | Henan, China |
Year Established | 2007 |
Annual Output Value | Above US$ 200 Million |
Main Markets | North America;Asia;Western Europe;Africa;Russia;Middle East |
Company Certifications | ISO 9001:2008 |
2. Manufacturer Certificates
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability
a) Trade Capacity | |
Nearest Port | Tianjin |
Export Percentage | 20% - 30% |
No.of Employees in Trade Department | 10-20 People |
Language Spoken: | English; Chinese |
b) Factory Information | |
Factory Size: | Above 150,000 square meters |
No. of Production Lines | Above 10 |
Contract Manufacturing | Installation guide, OEM Service Offered |
Product Price Range | High; Average |
Send your message to us
Alumina-Spinel Castable for Ladle
- Loading Port:
- China Main Port
- Payment Terms:
- TT or L/C
- Min Order Qty:
- 2 MT m.t.
- Supply Capability:
- 5000 Tons Per Month m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords