• Alloy Steel billets for sale Q195/Q215 China System 1
  • Alloy Steel billets for sale Q195/Q215 China System 2
Alloy Steel billets for sale Q195/Q215 China

Alloy Steel billets for sale Q195/Q215 China

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
15672 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Price term:
FOB/CIF/ CFR according to clients requirements
Delivery time:
within 45 days after receiving the L/C or advanced T/T payment.
Payment terms:
100%Irrevercable L/C at sight or T/T

 

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.

 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.

 

Size :100mm to 165mm

Length:6~12meters 

Grade: Q195/Q215/Q235/Q275

Qaulity:own factory, stable quality

Tolerance: Strictly according to the G/B and JIS standard

 

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

Alloy Steel billets for sale Q195/Q215 China

Alloy Steel billets for sale Q195/Q215 China

Alloy Steel billets for sale Q195/Q215 China

Alloy Steel billets for sale Q195/Q215 China

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

Q: What are the different types of steel billet handling equipment?
Some different types of steel billet handling equipment include overhead cranes, forklifts, conveyors, and magnetic lifting devices.
Q: How do steel billets contribute to the manufacturing of construction equipment?
Steel billets contribute to the manufacturing of construction equipment by serving as the raw material that is shaped and formed into different components such as beams, plates, and pipes. These billets are heated and then passed through various processes like rolling, forging, and machining to create the desired shape and size. The strength, durability, and versatility of steel make it an ideal material for construction equipment, ensuring that the machinery can withstand heavy loads, harsh environments, and demanding construction tasks.
Q: How are steel billets used in the production of reinforcing bars?
Steel billets are the primary raw material used in the production of reinforcing bars. They are heated and then passed through a series of rollers to shape them into the desired size and shape of the reinforcing bar. The billets are typically made from recycled steel, which is melted and then cast into billet form. These billets are then reheated and processed to transform them into strong and durable reinforcing bars, which are widely used in construction to strengthen concrete structures and provide structural support.
Q: What are the specifications for tool steel billets used in the manufacturing of cutting tools?
The specifications of tool steel billets used in the manufacturing of cutting tools can vary depending on the specific application and requirements. However, there are some commonly followed general specifications. 1. Composition: High-carbon alloy steels are typically used to make tool steel billets. These steels contain elements such as chromium, molybdenum, vanadium, tungsten, and cobalt, which enhance the hardness, wear resistance, toughness, and heat resistance of the tool steel. 2. Hardness: Tool steel billets need to have high hardness in order to withstand demanding cutting conditions. The hardness is usually measured on the Rockwell C (HRC) scale and can range from 58 HRC to 65 HRC or even higher for certain applications. 3. Wear Resistance: Cutting tools experience abrasive wear during operation. Therefore, tool steel billets are formulated to have excellent wear resistance properties, ensuring a longer tool life. This is achieved by incorporating alloying elements like chromium and vanadium, which increase the hardness and wear resistance of the tool steel. 4. Toughness: In addition to hardness and wear resistance, tool steel billets must have sufficient toughness to endure the high impact forces generated during cutting. High toughness ensures that the cutting tools do not easily fracture or chip, even under severe cutting conditions. 5. Heat Resistance: Cutting tools often face high temperatures during operation, especially in high-speed cutting applications. Tool steel billets must possess good heat resistance to prevent softening or deformation at elevated temperatures. This is achieved by adding alloying elements like molybdenum and tungsten, which contribute to the heat resistance properties of the tool steel. 6. Machinability: Tool steel billets should have good machinability to enable the production of complex cutting tool geometries with high precision. The proper selection of alloying elements and heat treatment processes can enhance the machinability of tool steel billets. It is important to note that the specific specifications for tool steel billets may vary depending on the cutting tool application, the material being cut, and the machining conditions. Therefore, consulting with the tool steel manufacturer or supplier is crucial to determine the exact specifications required for a particular cutting tool application.
Q: What are the potential applications of steel billets in the food and beverage industry?
Steel billets have several potential applications in the food and beverage industry. They are commonly used to manufacture various types of food processing equipment, such as mixers, blenders, and conveyors, due to their strength and durability. Additionally, steel billets can be used to create storage and transportation containers for food products, ensuring their safety and freshness. The corrosion resistance of stainless steel billets makes them suitable for applications requiring hygiene, such as food preparation surfaces and utensils. Overall, steel billets offer a wide range of possibilities for enhancing efficiency and maintaining high standards of cleanliness in the food and beverage industry.
Q: Can steel billets be heat treated for increased hardness?
Yes, steel billets can be heat treated to increase their hardness. Heat treatment is a process that involves heating the steel billets to a specific temperature and then cooling them rapidly or slowly, depending on the desired hardness. This process is typically done to improve the mechanical properties of the steel, such as hardness, strength, and wear resistance. There are different heat treatment methods that can be used to increase the hardness of steel billets. One common method is called quenching and tempering. In this process, the steel billets are heated to a high temperature, typically above its critical temperature, and then rapidly cooled by quenching them in a liquid medium, such as oil or water. This rapid cooling causes the steel to harden. However, the steel can become too brittle in this state, so it is then tempered by reheating it to a lower temperature. This tempering process helps to reduce the brittleness and increase the toughness of the steel while maintaining its hardness. Another heat treatment method that can be used for increasing hardness is called case hardening. This process involves changing the composition of the steel surface to create a hard outer layer while maintaining a softer core. Case hardening is typically achieved by introducing carbon or nitrogen into the surface of the steel billets through processes such as carburizing or nitriding. The steel billets are then heated to a specific temperature and held for a certain period of time, allowing the carbon or nitrogen to diffuse into the steel. This creates a hardened surface layer, which provides increased hardness and wear resistance while retaining the toughness of the core. In conclusion, steel billets can be heat treated to increase their hardness. The specific heat treatment method used will depend on the desired level of hardness, as well as other mechanical properties required for the application of the steel.
Q: How do steel billets contribute to energy efficiency?
Steel billets have a significant impact on energy efficiency in various ways: 1. Enhanced production efficiency: Steel billets serve as the initial form of steel utilized in different manufacturing processes. Employing steel billets as the starting material allows manufacturers to achieve higher production efficiency. The uniform size and shape of billets facilitate easier handling, cutting, and shaping, thereby reducing energy consumption during manufacturing. 2. Optimized resource utilization: Steel billets are commonly produced from recycled steel scrap. By employing recycled steel as the raw material, manufacturers minimize the need for extracting and processing virgin iron ore, a highly energy-intensive procedure. This conservation of natural resources helps in reducing overall energy consumption related to steel production. 3. Efficient heat recovery: The manufacturing of steel billets necessitates high temperatures for melting and shaping the steel. However, modern steel plants are equipped with advanced technologies that enable efficient heat recovery. The excess heat generated during the process can be captured and utilized for various purposes, such as generating steam or heating other areas of the plant. This heat recovery system effectively reduces energy wastage and enhances overall energy efficiency. 4. Employment of energy-efficient equipment: Steel billet production often involves the use of heavy machinery and equipment. Manufacturers are increasingly investing in energy-efficient technologies and equipment to minimize energy consumption. For instance, the utilization of more efficient electric arc furnaces or induction heating systems can significantly reduce energy requirements compared to traditional methods. These technological advancements contribute to the overall energy efficiency of steel billet production. In conclusion, steel billets play a pivotal role in enhancing energy efficiency in the steel industry. Their impact is evident in production efficiency, resource optimization, heat recovery, and the utilization of energy-efficient equipment. By minimizing energy consumption, the use of steel billets promotes a more sustainable steel manufacturing process.
Q: What are the common grades of steel used for billets?
The common grades of steel used for billets vary depending on the intended application and specific requirements. However, some of the most commonly used grades include: 1. Carbon Steel: Carbon steel billets are widely used due to their high strength, durability, and affordability. Grades such as AISI 1018, 1020, 1045, and 1060 are commonly used for general-purpose applications. 2. Alloy Steel: Alloy steel billets are blended with specific alloying elements to enhance their mechanical properties such as strength, toughness, and corrosion resistance. Grades like AISI 4140, 4340, and 8620 are commonly used for applications requiring higher strength, heat resistance, or wear resistance. 3. Stainless Steel: Stainless steel billets are chosen for their excellent corrosion resistance and aesthetic appeal. Grades such as 304, 316, and 420 are commonly used for various applications, including construction, automotive, and food processing industries. 4. Tool Steel: Tool steel billets are specifically designed to have high hardness, wear resistance, and toughness. Grades such as AISI O1, D2, and A2 are commonly used for manufacturing cutting tools, dies, and molds. It is important to note that the selection of the appropriate grade of steel depends on the specific requirements of the application, such as mechanical properties, corrosion resistance, and temperature resistance. Consulting with a metallurgist or an expert in the field can help determine the most suitable grade of steel for billet production.
Q: What are the different methods used for heating steel billets?
There are several methods used for heating steel billets including induction heating, flame heating, and electric resistance heating.
Q: What is the typical elongation of a steel billet?
The elongation of a steel billet can vary depending on factors such as the grade of steel, manufacturing process, and intended application. Typically, the elongation falls between 20% to 30%. Elongation measures a material's ability to stretch before breaking, expressed as a percentage. It is determined through a tensile test where a sample is subjected to increasing forces until it fractures. The amount of elongation is determined by comparing the sample's initial and final lengths. Steel is known for its high tensile strength and some degree of ductility. A steel billet can stretch by 20% to 30% of its original length before breaking. Different steel grades have varying elongation properties. Higher carbon steels have lower elongation values compared to low carbon or mild steels. Manufacturing processes like hot rolling or cold drawing can also affect the steel's microstructure and elongation characteristics. The required elongation for a steel billet depends on its intended application. Industries like construction or automotive may require higher elongation values to endure the stresses it will face. Other applications may prioritize tensile strength over elongation.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords