• Steel Bloom Manufactured by Blast Furnace System 1
  • Steel Bloom Manufactured by Blast Furnace System 2
Steel Bloom Manufactured by Blast Furnace

Steel Bloom Manufactured by Blast Furnace

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 

 Steel Bloom Manufactured by Blast Furnace

 

1.Structure of  Steel Bloom Manufactured by Blast Furnace

 

Steel Bloom Manufactured by Blast Furnace is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square billet or rectangular billet. rolling The sector products such as flat steel, Angle steel, select the rectangular billet or slab. Had better profiled billet when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round billet is the production of seamless tube. 


2.Main Features of  Steel Bloom Manufactured by Blast Furnace.

Steel Bloom Manufactured by Blast Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.

 

3.  Steel Bloom Manufactured by Blast Furnace Images

 

 

Steel Bloom Manufactured by Blast Furnace

Steel Bloom Manufactured by Blast Furnace

 

 

 

 

4.  Steel Bloom Manufactured by Blast Furnace Specification

 Steel Bloom Manufactured by Blast Furnace  rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the billet. Steel billet is used in the production of semi-finished products, generally cannot be used directly for the society. Steel billets and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, billet and the steel is relatively easy to distinguish, but for some steel billet, and have the same specification and same steel purposes (such as rolling tube billet), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish

Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P

 

5.FAQ of  Steel Bloom Manufactured by Blast Furnace

 

We have organized several common questions for our clientsmay help you sincerely 

 

①How about your company

A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

 

②How to guarantee the quality of the products

We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

 

③How is the packaging and delivery?

Loose by Vessel and the delivery term is based on the the quantity and our factory’s schedule then.

Q: How are steel billets measured?
To ensure accurate dimensions and specifications, various techniques and tools are employed in measuring steel billets. One commonly utilized approach involves the utilization of calipers or micrometers. These tools enable precise measurements of the billet's diameter, length, and other necessary dimensions. Apart from physical measurements, non-destructive testing methods like ultrasonic testing or eddy current testing are also applied to steel billets. These techniques effectively identify any internal defects or inconsistencies within the billet, thus guaranteeing its quality and integrity. Moreover, the mass of steel billets is often determined through weighing. Depending on the size and weight of the billet, different weighing scales or load cells are employed for this purpose. The weight measurement plays a vital role in determining the billet's mass per unit length, which is crucial for calculating its density and other mechanical properties. In summary, the measurement of steel billets is an essential stage in the manufacturing process. It ensures that the billets meet the necessary specifications for further processing and utilization in diverse industries such as construction, automotive, and manufacturing.
Q: How are steel billets used in the manufacturing of construction equipment?
Steel billets are used as raw material in the manufacturing of construction equipment, particularly in the fabrication of heavy-duty components such as frames, chassis, and structural supports. These billets are heated, shaped, and machined to create the desired parts, ensuring strength, durability, and stability in construction equipment.
Q: How are steel billets used in the production of railway components?
Steel billets are used in the production of railway components by being heated and molded into specific shapes, such as rails, sleepers, and fasteners. These billets serve as the raw material that is further processed and refined to create durable and strong components that can withstand the heavy loads and stresses of railway operations.
Q: How are steel billets used in the production of industrial machinery?
Industrial machinery production relies heavily on steel billets, which serve as essential components. These billets act as the raw material that undergoes shaping and transformation processes to produce a variety of machine parts. Typically, the billets are heated and then subjected to manufacturing techniques like forging, rolling, or extrusion. Forging is a commonly employed method in the production of industrial machinery. In this process, the billets are heated to high temperatures and shaped using compressive forces applied by a forging press or hammer. This enables the steel to be molded into desired shapes and sizes, resulting in components such as gears, crankshafts, or connecting rods. Rolling is another technique that utilizes steel billets in industrial machinery production. In this method, the heated billets are passed through a series of rollers to gradually reduce their thickness and shape them into long sheets or bars. These rolled steel products can then be further processed and used in the construction of machine frames, chassis, or structural components. Extrusion, on the other hand, is a technique that also involves steel billets. In this process, the billets are heated and forced through a die to create intricate shapes with consistent cross-sections. Extruded steel parts find extensive use in the production of machine components like tubes, pipes, or profiles. Overall, steel billets play a foundational role in the manufacturing of industrial machinery. They undergo various shaping and transformation processes to produce the necessary components that contribute to the overall functionality and durability of the machinery.
Q: How are steel billets used in the manufacturing of pipes?
Steel billets are the initial raw material used in the manufacturing of pipes. They are heated and then passed through a series of rollers to form a cylindrical shape. These billets are then elongated and shaped into seamless pipes or welded together to create welded pipes. The high strength and durability of steel billets make them ideal for pipe production, ensuring the pipes can withstand high-pressure environments and various applications such as oil and gas transportation, plumbing, construction, and more.
Q: What are the different surface treatments for improved formability in steel billets?
Some of the different surface treatments for improved formability in steel billets include hot rolling, cold rolling, annealing, and pickling. These treatments help to enhance the plasticity and ductility of the steel, making it easier to shape and form into desired products.
Q: What are the different machining processes for steel billets?
There are several machining processes that can be used for steel billets, depending on the desired outcome. Some common machining processes for steel billets include turning, milling, drilling, and grinding. Turning involves rotating the billet against a cutting tool to remove material and create a desired shape. Milling involves using a rotating cutter to remove material from the billet, typically in a perpendicular or angled direction. Drilling involves creating holes in the billet using a drill bit. Grinding involves using an abrasive wheel to remove material and create a smooth surface finish on the billet. These machining processes can be combined or used individually to achieve the desired shape, dimensions, and surface finish for the steel billet.
Q: What are the specifications for steel billets used in the aerospace industry?
The aerospace industry demands highly precise and stringent specifications for steel billets. These billets must adhere to specific standards to guarantee the safety and durability of aircraft components. Firstly, the steel utilized for aerospace billets must possess outstanding strength and toughness. It must exhibit a high tensile strength and the ability to withstand extreme forces and stresses encountered during flight. Additionally, the steel must demonstrate excellent fracture resistance to minimize the risk of catastrophic failure. Moreover, the steel billets must possess exceptional resistance to corrosion and oxidation. This is crucial as aircraft frequently operate in harsh environments, such as high altitudes and exposure to various chemicals. The steel should resist rust, pitting, and other forms of degradation that can compromise its structural integrity over time. Furthermore, the steel billets employed in aerospace applications must exhibit precise dimensional tolerances and uniformity. They should be manufactured according to exact specifications to ensure consistency in the production of aircraft components. This entails precise size, shape, and surface finish, which are vital for proper fitting and assembly. Regarding chemical composition, the steel used for aerospace billets may vary depending on the specific application and component being manufactured. However, it typically includes elements like carbon, manganese, chromium, nickel, and molybdenum. These alloying elements enhance the mechanical properties of the steel, such as hardness, toughness, and heat resistance. Additionally, the steel billets utilized in the aerospace industry undergo rigorous testing and quality control procedures. This includes non-destructive testing methods such as ultrasonic inspection, magnetic particle inspection, and dye penetrant inspection to identify any internal defects or discontinuities. In summary, the specifications for steel billets used in the aerospace industry encompass exceptional strength, toughness, corrosion resistance, dimensional accuracy, and precise chemical composition. These stringent requirements ensure the reliability and safety of aircraft components, enabling them to withstand the demanding conditions experienced during flight.
Q: What are the properties and characteristics of steel billets?
Steel billets are semi-finished metal products that are typically used in the production of various steel products. They possess several properties and characteristics that make them suitable for such applications. Firstly, steel billets have a high strength-to-weight ratio, which makes them incredibly strong and able to withstand heavy loads. This strength is derived from the carbon content in the steel, which enhances its structural integrity. Secondly, steel billets have excellent heat conductivity, allowing for efficient heat transfer during various manufacturing processes. This property makes them ideal for applications that involve high-temperature operations, such as forging and rolling. Moreover, steel billets possess good machinability, meaning they can be easily shaped and formed into desired products. This property is essential in the manufacturing industry, as it allows for the production of complex and customized steel components. Steel billets also exhibit excellent ductility, which enables them to be stretched and molded without breaking. This characteristic is crucial in applications where the steel needs to be bent or formed into various shapes. Additionally, steel billets have a high resistance to corrosion, making them suitable for use in outdoor or corrosive environments. This property ensures the longevity and durability of steel products made from billets. Furthermore, steel billets can be easily welded, allowing for the fabrication of large and complex structures. Their weldability makes them versatile and adaptable to different construction and manufacturing needs. Lastly, steel billets have a consistent and uniform composition, ensuring high-quality and reliable steel products. This consistency is achieved through precise manufacturing processes and strict quality control measures. In conclusion, steel billets possess several properties and characteristics that make them highly desirable in the production of steel products. Their high strength, heat conductivity, machinability, ductility, corrosion resistance, weldability, and consistent composition make them essential in various industries, including construction, automotive, and manufacturing.
Q: What is the cost of producing steel billets?
The cost of producing steel billets can vary depending on various factors such as the quality of raw materials, energy costs, labor expenses, equipment maintenance, and market demand. It is difficult to provide a specific cost without considering these variables, but it generally involves substantial investment in machinery, infrastructure, and operational expenses.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords