• Steel billets Q215 grade hot sale factory price System 1
  • Steel billets Q215 grade hot sale factory price System 2
Steel billets Q215 grade hot sale factory price

Steel billets Q215 grade hot sale factory price

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
15000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Grade:
Q195/Q215/Q235/Q275
Tolerance:
Strictly according to the G/B and JIS standard
Qaulity:
own factory, stable quality

Steel billets have distinct characteristics as compared with already furnished steel bars and products. 

Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets 

are also known for their malleability and ductility, especially when exposed to varying temperatures during 

shaping and molding.

 

Used for the plant, the bridge,shipment building high-rise building construction,lifting and transportation machinery, equipment manufracturing base building 

the support foundation pile manufacturing.

 

Size :100mm to 165mm

Length:6~12meters 

Delivery time: within 45 days after receiving the L/C or advanced T/T payment.

Price term: FOB/CIF/ CFR according to clients requirements

 Payment terms: 100%Irrevercable L/C at sight or T/T

 

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

Steel billets Q215 grade hot sale factory price

Steel billets Q215 grade hot sale factory price

Steel billets Q215 grade hot sale factory price

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

 

 

 

Q: How are steel billets inspected for internal and surface defects?
Steel billets are inspected for internal and surface defects through a variety of methods to ensure their quality and integrity. For internal defects, one common method is ultrasonic testing (UT), where high-frequency sound waves are transmitted through the billet. Any discontinuities or defects within the billet will cause the sound waves to reflect back to the receiver, indicating the presence of a flaw. UT can detect defects such as cracks, voids, and inclusions within the billet. Another technique used for inspecting internal defects is magnetic particle inspection (MPI). This method involves applying a magnetic field to the billet and then coating it with iron particles. Any internal defects or cracks will disrupt the magnetic field, causing the iron particles to gather at these locations and become visible under proper lighting conditions. When it comes to surface defects, visual inspection is typically the first step. Trained inspectors visually examine the billet for any visible irregularities, such as cracks, pits, scratches, or deformities. They may also use specialized equipment like magnifying glasses or microscopes to ensure a thorough inspection. In addition to visual inspection, surface defects can also be detected using other non-destructive testing techniques. One common method is dye penetrant testing (PT), where a colored liquid dye is applied to the billet's surface. The dye seeps into any surface defects and is later removed, leaving behind a visible indication of the defect. This method is particularly effective in detecting surface cracks or discontinuities. Another technique used for surface defect inspection is eddy current testing (ECT). ECT relies on the principle that a fluctuating magnetic field induces electrical currents in conductive materials like steel. Any surface defects or irregularities will disrupt the induced currents, which can be detected by monitoring changes in the electrical properties of the billet. ECT is commonly used to detect surface cracks, pits, or variations in thickness. Overall, a combination of these inspection methods allows for a comprehensive evaluation of steel billets, ensuring that both internal and surface defects are detected and addressed before the billets are further processed or used in various applications.
Q: What are the potential applications of steel billets in the chemical aftermarket?
Steel billets have several potential applications in the chemical aftermarket. They can be used as raw material for the production of various chemical products, such as pipes, tanks, and containers. Additionally, steel billets can be utilized in the construction of chemical processing equipment, such as reactors and heat exchangers, due to their strength and durability. Furthermore, they can also serve as a base material for the fabrication of specialty alloys used in the chemical industry. Overall, steel billets play a crucial role in supporting the production and infrastructure needs of the chemical aftermarket.
Q: Billet heating furnace prices?
Look at the video case, you can consult the advisory.
Q: What is the typical composition of steel billets?
The typical composition of steel billets can vary depending on the specific requirements and intended use. However, in general, steel billets are primarily composed of iron and carbon, with other elements added to enhance certain properties. The carbon content in steel billets is typically around 0.1-0.3%. In addition to iron and carbon, steel billets often contain small amounts of other elements such as manganese, silicon, sulfur, and phosphorus. Manganese helps improve the strength and hardness of the steel while also promoting better heat treatment response. Silicon is commonly added to enhance the steel's fluidity during casting. Sulfur and phosphorus are impurities that need to be minimized as they can negatively affect the steel's machinability and mechanical properties. Furthermore, alloying elements such as chromium, nickel, molybdenum, and vanadium may also be present in steel billets to impart specific properties. For instance, chromium improves corrosion resistance, nickel enhances toughness and ductility, molybdenum increases high-temperature strength, and vanadium improves wear resistance. Overall, the composition of steel billets is carefully controlled to achieve the desired mechanical, physical, and chemical properties required for the subsequent processing and final applications of the steel.
Q: What are the different types of steel billet extrusion processes?
The manufacturing industry utilizes various steel billet extrusion processes, each with its own distinct characteristics. These processes employ high pressure to shape solid steel billets into desired profiles or shapes. 1. The most frequently employed method is direct extrusion. This process involves placing the billet within a container, commonly referred to as a "container" or "container die." The container possesses a small opening, known as a "die," through which the billet is propelled using a ram or piston. The billet is then forced through the die, resulting in the formation of the desired shape. 2. Another technique, indirect extrusion, involves a stationary container die. The billet is pushed through the die using a punch or ram. The billet is positioned inside a hollow chamber called a "container" or "container die," featuring a smaller opening at one end. Pressure is applied to the billet using the punch, compelling it to flow through the die and adopt the desired profile. 3. Impact extrusion shares similarities with direct extrusion but incorporates a specially designed punch. This punch strikes the billet with a significant impact force, causing it to flow and take on the shape of the die. Impact extrusion is frequently utilized to produce small, intricate shapes with thin walls. 4. Hydrostatic extrusion employs a sealed chamber filled with a pressurized fluid, typically oil or water, in which the billet is placed. The fluid pressure is utilized to force the billet to flow through the die and acquire the desired shape. Hydrostatic extrusion is commonly employed for the production of complex shapes with high precision. 5. Cold extrusion is performed at room temperature without the need for heating the steel billet. This method is often used to produce small, intricate parts with high dimensional accuracy. It offers a cost-effective approach, enabling the production of parts with excellent surface finish. The selection of a specific steel billet extrusion process depends on various factors, including the desired shape, size, material properties, and production requirements. Each process has its own advantages and limitations.
Q: What is the difference between steel and billet in the process?
Square is a square steel hollow, with iron produced; but it is a square steel billet is generally solid, forging or casting molding.
Q: What are the different surface finishes available for alloy steel billets?
Alloy steel billets offer a variety of surface finishes to cater to specific requirements and applications. Among the most commonly used surface finishes are: 1. Hot rolled: The prevalent surface finish, obtained by subjecting the steel billet to high temperatures during the rolling process. This results in a rough and scaled surface. 2. Cold drawn: Achieved by pulling the steel billet through a die at room temperature. It yields a smooth and polished surface, enhancing dimensional accuracy and surface quality. 3. Peeled: Involves removing a layer of material from the steel billet's surface using a peeling tool. This process produces a smooth and shiny surface finish, improving both surface quality and dimensional accuracy. 4. Ground: Accomplished by grinding the surface of the steel billet using abrasive wheels or belts. It delivers a smooth and even surface finish, enhancing both surface quality and dimensional accuracy. 5. Turned: In this process, a cutting tool is used to rotate the steel billet, removing material from the surface and creating a smooth and polished finish. It is particularly useful for high precision applications that require a smooth surface finish. 6. Polished: Achieved by polishing the steel billet using abrasive compounds and buffing wheels. This method provides a mirror-like finish, enhancing aesthetic appeal and corrosion resistance. It is crucial to carefully select the appropriate surface finish based on specific requirements such as dimensional accuracy, surface quality, aesthetic appeal, and corrosion resistance.
Q: What are the main properties of steel billets?
Steel billets are semi-finished metal products that serve as the starting material for various steel products. They possess several important properties that make them suitable for further processing and shaping into different forms. Firstly, steel billets exhibit a high level of strength and durability. This is primarily due to the composition of steel, which is predominantly made up of iron with small amounts of carbon and other elements. This composition gives steel billets excellent mechanical properties, including high tensile strength and resistance to deformation. Secondly, steel billets have good heat transfer properties. Steel is known for its ability to conduct heat efficiently, which makes it an ideal material for applications where thermal conductivity is required, such as in the manufacturing of automotive parts or construction materials. Additionally, steel billets possess good machinability. Machinability refers to the ease with which a material can be shaped or formed using various machining processes. Steel billets can be easily cut, drilled, and shaped into desired forms, allowing for efficient processing and fabrication. Furthermore, steel billets have excellent weldability. Steel is known for its compatibility with welding processes, allowing for the joining of different steel components or the repair of damaged steel structures. This property is crucial in various industries, including construction, automotive, and shipbuilding. Lastly, steel billets have a high level of recyclability. Steel is one of the most recycled materials globally, with a significant portion of steel production being derived from recycled steel. This makes steel billets an environmentally friendly choice, as they can be recycled and repurposed multiple times without losing their properties. In summary, the main properties of steel billets include high strength and durability, good heat transfer properties, excellent machinability and weldability, and a high level of recyclability. These properties make steel billets a versatile and widely used material in various industries, ranging from construction and manufacturing to automotive and aerospace.
Q: What are the different surface treatments available for steel billets?
There are several surface treatments available for steel billets, including shot blasting, pickling, phosphating, and galvanizing. Shot blasting involves propelling abrasive materials at high speeds to remove rust and scale from the surface. Pickling involves immersing the billets in an acid solution to remove oxide layers and impurities. Phosphating applies a layer of phosphate coating to enhance corrosion resistance and improve paint adhesion. Galvanizing involves applying a zinc coating to protect the surface from corrosion.
Q: How are steel billets used in the production of wire rods and bars?
Steel billets are used in the production of wire rods and bars as they serve as the initial raw material. These billets are heated and then rolled or forged into long, slender shapes to create wire rods or bars. The size and shape of the billets determine the final dimensions of the wire rods or bars, which are used in various industries such as construction, automotive, and manufacturing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords