• Monolithic Refractories for Iron and Steel Industry:AL2O3-SIO2-C Castable for Blast Furnace Tapping Channel System 1
  • Monolithic Refractories for Iron and Steel Industry:AL2O3-SIO2-C Castable for Blast Furnace Tapping Channel System 2
  • Monolithic Refractories for Iron and Steel Industry:AL2O3-SIO2-C Castable for Blast Furnace Tapping Channel System 3
Monolithic Refractories for Iron and Steel Industry:AL2O3-SIO2-C Castable for Blast Furnace Tapping Channel

Monolithic Refractories for Iron and Steel Industry:AL2O3-SIO2-C Castable for Blast Furnace Tapping Channel

Ref Price:
$1,147.11 - 1,402.03 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
2 m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

General Information of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel
FIREF Al2O3- SiO2-C castable for blast furnace tapping channel is known for its excellent corrosion and scouring resistance of iron steel which is made strictly as per international standards.  Beside, FIREF Al2O3- SiO2-C castable for blast furnace tapping channel has gained a good fame for its long operating life and easy execution and mending. 

 

Technical data of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel

 

datasheet

Production line and packing of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel

 

production line

 

packing

Feature of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel
Long operating life
Excellent corrosion and scouring resistance of iron steel
Easy execution and mending

 

Application of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel

FIREF Al2O3-SiO2-C castable for blast furnace tapping channel can be used widely for in situ casting or pre-casting for tri-angle area of UHP EAF roof.

 

Production Flow of Al2O3-SiO2-C Castable for Blast Furnace Tapping Channel

flow

 

Q: What are the common manufacturing processes used for monolithic refractories?
Monolithic refractories are commonly manufactured using the following processes: 1. Mixing: The initial step involves accurately measuring and combining the raw materials to create a uniform mixture. 2. Wetting: The mixture is then moistened with water or a liquid binder to enhance its workability and plasticity, facilitating shaping and molding. 3. Forming: Various techniques such as casting, gunning, ramming, or extrusion are employed to shape the wet mixture. Casting entails pouring it into a mold, gunning involves spraying it onto a surface, ramming compacts it using a tool, and extrusion forces it through a die to create specific shapes. 4. Drying: The formed monolithic refractory is dried in a controlled environment with specific temperature and humidity conditions to eliminate excess moisture, preventing cracks or warping. 5. Firing: The dried monolithic refractory is then subjected to high temperatures to achieve the desired properties. This process, known as sintering, promotes particle bonding, increasing the material's strength and stability. 6. Finishing: Following the firing process, additional finishing processes like grinding, polishing, or coating may be employed to enhance the surface quality and overall performance of the monolithic refractory. By employing these standard manufacturing procedures, high-quality monolithic refractories with consistent properties and performance characteristics are produced.
Q: How do monolithic refractories resist corrosion from molten metals?
Due to their unique composition and structural properties, monolithic refractories have the ability to resist corrosion caused by molten metals. Typically made from a single material like alumina, magnesia, or silica, these refractories are specifically designed to withstand harsh chemical environments and high temperatures. A significant contributing factor to their corrosion resistance is their dense and compact structure. Through a specialized manufacturing process, monolithic refractories are created with a tightly bonded material that has minimal porosity. This low porosity prevents molten metals from penetrating the refractory and causing damage. Moreover, monolithic refractories often incorporate additives or binders to enhance their resistance to corrosion. These additives, such as silicon carbide, zirconia, or other chemically stable materials, can endure the corrosive effects of molten metals. Additionally, monolithic refractories possess excellent thermal shock resistance. This means that they can endure sudden temperature changes without cracking or spalling. When in contact with molten metals, the refractory's ability to handle thermal shock prevents the formation of cracks or fractures, which would allow further penetration of the corrosive molten metal. In conclusion, the combination of a dense structure, chemical additives, and high thermal shock resistance enables monolithic refractories to effectively resist corrosion caused by molten metals. These refractories find extensive use in various industrial applications, including steelmaking, foundries, and non-ferrous metal processing, where they offer reliable and durable protection against corrosion.
Q: What are the main applications of monolithic refractories in the iron and steel industry?
Monolithic refractories are widely used in the iron and steel industry for various applications such as lining furnaces, ladles, and tundishes. They provide excellent thermal insulation, high resistance to thermal shock, and resistance to chemical reactions with molten metal. These refractories help in maintaining consistent temperature and reducing heat loss, thereby ensuring efficient and cost-effective production processes in the iron and steel industry.
Q: What are the key properties of monolithic refractories?
Monolithic refractories, which lack a definite form like bricks or tiles, are a type of refractory material. They are typically composed of a mixture of aggregates, binders, and additives that can be easily molded and installed in various industrial applications. The main characteristics of monolithic refractories include: 1. Exceptional heat resistance: Designed to endure extremely high temperatures, monolithic refractories are suitable for industries such as steel, cement, glass, and petrochemicals. They can maintain their strength and structural integrity even at temperatures exceeding 3000 degrees Fahrenheit. 2. Ability to withstand thermal shock: Monolithic refractories possess the capacity to resist sudden temperature changes, which can cause cracking or damage to the refractory. This property is crucial in environments where rapid heating or cooling occurs, such as furnaces or kilns. 3. Resistance to chemical attack: Monolithic refractories display excellent resistance to corrosion from molten metals, slag, gases, and other harsh substances. This makes them ideal for environments where contact with acidic or alkaline materials is common. 4. Low porosity: Monolithic refractories have low porosity, meaning they have a high density and are less permeable to gases and liquids. This property ensures that molten metals or corrosive substances cannot easily penetrate the refractory, contributing to its longevity and performance. 5. Easy installation and repair: Unlike traditional refractory materials like bricks, monolithic refractories can be easily molded and installed in various shapes and sizes. They can be applied using techniques such as spraying, casting, or ramming, allowing for faster installation and reduced downtime. Additionally, if any damage occurs, they can be easily repaired or patched. 6. Strong mechanical strength: Monolithic refractories possess sufficient mechanical strength to endure the stresses and pressures encountered during their service life. This guarantees their structural integrity, even under high load conditions. Overall, the versatile and reliable properties of monolithic refractories make them an excellent choice for a wide range of industrial applications that require resistance to high temperatures, chemicals, and thermal shock.
Q: How do monolithic refractories improve the quality and consistency of iron and steel products?
Monolithic refractories play a crucial role in improving the quality and consistency of iron and steel products. These refractories are unshaped and can be easily molded and installed, providing several advantages over traditional brick refractories. Firstly, monolithic refractories offer better thermal insulation properties, ensuring effective heat management during the production process. By maintaining consistent and controlled temperatures, these refractories prevent thermal shocks and minimize thermal gradients, leading to reduced cracking and distortion in the final products. This results in improved dimensional stability and overall better quality. Furthermore, monolithic refractories have excellent resistance to thermal spalling and erosion. They can withstand high temperatures, chemical attacks, and mechanical stress, protecting the lining of the furnaces and vessels used in iron and steel production. This resistance enhances the durability and reliability of refractory linings, preventing premature failure and extending the lifespan of the equipment. Another advantage of monolithic refractories is their ability to provide a seamless lining. Unlike brick refractories, which have joints and gaps that can lead to heat loss and uneven distribution, monolithic refractories create a continuous lining with no weak points. This ensures uniform heat distribution and minimizes the risk of hotspots or cold spots, resulting in consistent and reliable iron and steel products. Monolithic refractories also offer flexibility in design and installation. They can be customized to fit various shapes and sizes, allowing for better furnace design optimization. This flexibility enables efficient use of space, improved heat transfer, and reduced energy consumption, all of which contribute to the overall quality and consistency of the final iron and steel products. In summary, monolithic refractories improve the quality and consistency of iron and steel products by providing superior thermal insulation, resistance to thermal spalling and erosion, seamless linings, and flexibility in design and installation. These refractories enhance the efficiency and reliability of the production process, resulting in higher-quality final products that meet the industry's stringent standards.
Q: What are the common failure mechanisms of monolithic refractories?
Some common failure mechanisms of monolithic refractories include thermal shock, spalling, erosion, chemical attack, and mechanical stress. These factors can weaken the refractory material, causing it to crack, break, or deteriorate over time.
Q: How do monolithic refractories improve the thermal efficiency of iron and steel furnaces?
The thermal efficiency of iron and steel furnaces greatly benefits from the use of monolithic refractories. These refractories, which are solid and unified, are essential for lining the furnaces and protecting them from the extreme temperatures involved in the metal production process. One way in which monolithic refractories enhance thermal efficiency is by minimizing heat loss. Due to their low thermal conductivity, these materials do not conduct heat well. By lining the furnace with monolithic refractories, the heat produced inside the chamber is effectively contained, resulting in less heat being lost to the surroundings. This allows for a more efficient use of energy, as less heat goes to waste and more is utilized for the purpose of heating and melting the metal. Moreover, monolithic refractories also contribute to the overall efficiency of iron and steel furnaces by offering a high level of heat resistance. The extreme temperatures experienced inside these furnaces can easily damage traditional refractory materials. However, monolithic refractories are specifically designed to withstand these harsh conditions, maintaining their integrity and performance over long periods of time. This durability ensures that the lining remains intact, preventing any potential leakage of heat and allowing the furnace to operate at its maximum efficiency. Furthermore, the installation process of monolithic refractories is flexible. They can be easily shaped and molded to fit the intricate designs and contours of the furnace, resulting in a seamless and continuous lining. This eliminates any gaps or weak points that could allow heat to escape or cold air to enter, further enhancing the thermal efficiency of the furnace. In conclusion, monolithic refractories significantly improve the thermal efficiency of iron and steel furnaces by reducing heat loss, providing high heat resistance, and ensuring a tight and continuous lining. By optimizing heat utilization and minimizing energy wastage, these refractories play a crucial role in enhancing the productivity and sustainability of the iron and steel industry.
Q: What are the specific requirements of monolithic refractories for ladle purging applications?
The specific requirements of monolithic refractories for ladle purging applications include high thermal shock resistance, excellent erosion resistance, good slag resistance, and low porosity. Thermal shock resistance is crucial in ladle purging applications as the refractory material needs to withstand rapid temperature changes without cracking or spalling. This is particularly important during ladle purging, where the ladle is exposed to high temperatures during molten metal pouring and then quickly cooled down during purging. Erosion resistance is another important requirement for monolithic refractories in ladle purging applications. The refractory material should be able to withstand the erosive action of molten metal streams and metalloids during purging. It should have a high resistance to chemical attack, preventing the material from deteriorating or eroding away. Slag resistance is also necessary for monolithic refractories used in ladle purging. The refractory material should have good resistance to the corrosive effects of slag, which can be present in ladles during purging. Slag can cause chemical reactions that can degrade the refractory material, leading to premature failure. Low porosity is an essential requirement for monolithic refractories in ladle purging applications. Low porosity ensures that the refractory material is impermeable to molten metal, preventing it from infiltrating the material and causing damage. This also helps to maintain the integrity and performance of the refractory lining during ladle purging. Overall, monolithic refractories for ladle purging applications need to exhibit high thermal shock resistance, excellent erosion resistance, good slag resistance, and low porosity to ensure the durability and longevity of the refractory lining in ladles during purging operations.
Q: How are monolithic refractories different from traditional refractory bricks?
Monolithic refractories, unlike traditional refractory bricks, are composed of a single, homogeneous structure. This structural distinction leads to several differences between the two. Firstly, monolithic refractories provide greater flexibility and versatility in terms of shape and installation. They can be easily molded and shaped to fit specific applications and complex geometries, making them ideal for lining furnaces, kilns, and other high-temperature equipment. Secondly, monolithic refractories have superior thermal shock resistance compared to traditional refractory bricks. Their uniform structure allows for better heat distribution, minimizing the risk of thermal stress and cracking. This makes them suitable for applications with rapid temperature fluctuations or severe thermal cycling. Additionally, monolithic refractories often exhibit better overall performance in terms of strength, mechanical properties, and resistance to chemical attack. The absence of joints and seams eliminates potential weak points, resulting in a more durable and reliable lining. Moreover, the homogeneous structure provides better resistance to corrosive agents, ensuring prolonged service life in harsh environments. Lastly, monolithic refractories offer advantages in terms of installation and maintenance. Their monolithic nature simplifies the installation process, reducing labor and time requirements. Additionally, repairs and maintenance can be carried out more easily and cost-effectively compared to traditional refractory bricks, which may require the replacement of entire sections or bricks. In summary, monolithic refractories differ from traditional refractory bricks in structure, flexibility, thermal shock resistance, performance, and installation characteristics. These differences make monolithic refractories a preferred choice in many high-temperature applications, offering improved efficiency, durability, and ease of use.
Q: What are the common challenges faced by monolithic refractories in the iron and steel industry?
Monolithic refractories play a crucial role in the iron and steel industry, where they are extensively used in various applications such as lining furnaces, ladles, and tundishes. However, these materials also face several common challenges in this industry. One of the major challenges is thermal shock. Monolithic refractories are exposed to extreme temperature variations, particularly during the start-up and shut-down phases of the production process. The rapid heating and cooling cycles can cause thermal stress, leading to cracking and spalling. To combat this challenge, refractory manufacturers develop high-quality monolithic materials with enhanced thermal shock resistance. Another significant challenge is corrosion. The iron and steel industry involves the use of various aggressive materials such as molten metal, slag, and gases, which can chemically attack the refractory lining. This corrosion can lead to material degradation, erosion, and reduced service life. To address this issue, specialized monolithic refractories with excellent corrosion resistance are employed, often containing additives that can withstand the corrosive environment. Abrasion is also a common challenge faced by monolithic refractories in the iron and steel industry. The movement of raw materials, molten metal, and slag can cause mechanical wear on the refractory lining, resulting in loss of material and compromised performance. Refractory manufacturers develop abrasion-resistant monolithic materials that can withstand the intense wear and tear, ensuring prolonged service life. Furthermore, the iron and steel industry often requires refractories with good thermal conductivity. This is crucial to efficiently transfer heat and maintain optimal operating conditions. Achieving the right balance between thermal conductivity and mechanical strength can be challenging, as refractories with high thermal conductivity often exhibit lower mechanical strength. Therefore, selecting the appropriate monolithic refractory with the desired thermal conductivity properties is crucial for achieving optimal performance. Lastly, monolithic refractories also face challenges related to installation and maintenance. Due to their liquid or semi-liquid nature, the application of monolithic refractories requires skilled personnel and careful installation techniques. Moreover, periodic maintenance and repair are essential to ensure the longevity and performance of the refractory lining. Regular inspections, repairs, and proper curing techniques are necessary to mitigate these challenges and optimize the refractory's performance. In conclusion, monolithic refractories in the iron and steel industry face challenges such as thermal shock, corrosion, abrasion, thermal conductivity, and installation/maintenance. Addressing these challenges through the development of specialized refractory materials and employing proper installation and maintenance techniques is crucial for ensuring efficient and reliable performance in this demanding industry.
Our products are mainly mullite brick, high alimina brick acid-resistant refractory brick, phosphate abrasive brick and andalusite brick, with annual output of 20000 tons heavy refractory, the tunnel kiln with 80m in length is mainly for manufacturing of top quality refractory, such as corundum products, alumina products and spinel products. In order to promote sustainable development, we will insist on scientific development.

1. Manufacturer Overview

Location Henan, China
Year Established 2007
Annual Output Value Above US$ 60 Million
Main Markets Mid East; Eastern Europe; North America
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 31% - 50%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 36,000 square meters
No. of Production Lines Above 5
Contract Manufacturing OEM Service Offered
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords