Monolithic Refractories for Iron and Steel Industry:Low Weight Castable for Fireplace and Industrial Furnace
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 kg
- Supply Capability:
- 3000000 kg/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Low Weight Castable For Fireplace and Industrial Furnace in Iron and Steel
Product Description:
Low weight castable is manufactured according to international standards. The product is famous for its excellent abrasion resistance and low thermal conductivity. Further, these can be provided in different specifications as required by the clients. The Low weight castables are used high purity raw materials and additives as the main material, and made of under superfine powder adding technology.
Product Advantages:
The material has excellent structural stability and air tightness, and has high physical and chemical properties, also has a fine working ability.They should be used with the same material products.
Product Applications:
For feature of Low weight castable, they have excellent abrasion resistance, thermal shock resistance, high-temperature resistance, anti-corrode and have high intensity.
Designed for refractory lining of blast furnace iron and slag runners, skimmers and soon
They can be used in troughs of small and mid size BFs and in all positions of the troughs where fast tapping is required.
Product Specifications:
FAQ:
1. How you can control your quality?
For each production processing, we have complete QC system for the chemical composition
and Physical properties. After production, all the goods will be tested, and the quality certificate
will be shipped along with goods.
2. What's your delivery time?
It usually needs about 20days- 45 days after receiving the deposit.
3. Do you provide free samples?
Yes, we can provide a free sample for testing, If we have sample in stock,
The quantity based on the material type, The buyer should bear all the shipping costs.
4. What's your payment terms?
We can accept 30% deposit, 70% balance before shipment for ordrs over $ 2000.
5. Can we visit your Company?
Yes, certainly. You are very welcome to China and we will be honored to have a customer and friend.
Product Picture:
- Q: How do monolithic refractories contribute to energy efficiency in iron and steel production?
- Monolithic refractories contribute to energy efficiency in iron and steel production by providing superior insulation and heat containment properties. These refractories have low thermal conductivity, which minimizes heat loss and ensures that the intense temperatures required for the production process are maintained within the furnace or kiln. This reduces the need for excessive fuel consumption and enables more efficient use of energy resources. Additionally, monolithic refractories can withstand high temperatures without significant structural damage, prolonging their lifespan and reducing the frequency of replacement, further contributing to energy efficiency in the industry.
- Q: How do monolithic refractories perform in aluminum holding furnace applications?
- The use of monolithic refractories in aluminum holding furnace applications has been proven to be highly efficient and effective. These refractories are designed specifically to withstand the extreme temperatures and chemical environments found in these furnaces. One major advantage of monolithic refractories is their ability to create a continuous and seamless lining in the furnace. This eliminates the need for individual bricks or tiles, reducing the risk of thermal shock and cracking. The absence of joints also minimizes the likelihood of molten aluminum leaking through the lining, ensuring better containment and heat retention. Monolithic refractories also provide excellent thermal insulation properties, which are essential in aluminum holding furnaces. They have low thermal conductivity, helping to reduce heat loss and maintain a stable temperature within the furnace. This leads to improved energy efficiency and lower operating costs. Furthermore, monolithic refractories have exceptional resistance to corrosion and chemical attack from molten aluminum and its by-products, such as dross and fluxes. This resistance ensures a longer lifespan for the refractory lining, reducing the need for maintenance and downtime. In addition, monolithic refractories are known for their easy installation and repair. They can be installed quickly and easily, requiring minimal downtime for furnace maintenance. If any localized damage or wear occurs, repairs can be efficiently made by patching or spraying the affected area. In conclusion, monolithic refractories are an excellent choice for aluminum holding furnace applications due to their seamless lining, thermal insulation properties, resistance to corrosion, and easy installation and repair. These refractories significantly enhance the overall performance and efficiency of aluminum holding furnaces.
- Q: In iron and steel industry, the main raw materials for blast furnace ironmaking are iron ore, coke and limestone. What's the use of limestone here?
- CaCO3 CaO + CO2 =C = 2CO + CO2Fe2O3
- Q: What are the main applications of monolithic refractories in the iron and steel industry?
- Monolithic refractories play a crucial role in the iron and steel industry due to their various applications. Some of the main applications of monolithic refractories in this industry include: 1. Blast Furnaces: Blast furnaces are a key component in the iron and steel industry, where iron ore is converted into molten iron. Monolithic refractories are used to line the inner walls of blast furnaces, providing insulation and protection against the extreme temperatures and corrosive environment. They help maintain the integrity and efficiency of the furnace, ensuring smooth operation and prolonged service life. 2. Ladles and Tundishes: Ladles and tundishes are vessels used for transporting molten metal from the blast furnace to the next processing stage. Monolithic refractories are employed to line these vessels, as they can withstand the high temperatures and chemical reactions that occur during metal transfer. They prevent heat loss, minimize metal contamination, and improve the overall efficiency of the process. 3. Steelmaking Furnaces: Monolithic refractories are extensively used in various types of steelmaking furnaces, such as electric arc furnaces (EAFs) and basic oxygen furnaces (BOFs). These furnaces require lining materials that can withstand extreme temperatures, chemical reactions, and mechanical stresses. Monolithic refractories provide excellent thermal insulation, erosion resistance, and structural integrity, enabling efficient and reliable steel production. 4. Continuous Casting: Continuous casting is a widely used method for producing steel in large quantities. During this process, molten steel is continuously poured into a water-cooled mold, solidifying it into solid steel billets or slabs. Monolithic refractories are used to line the walls and floor of the mold, ensuring thermal insulation and preventing the adhesion of the solidified steel to the mold. They help maintain the desired shape of the casting and improve the quality of the final product. 5. Reheating Furnaces: Reheating furnaces are employed to heat steel billets or slabs before further processing. Monolithic refractories are utilized to line the walls and roof of these furnaces, as they can withstand high temperatures and thermal cycling. They provide insulation, reduce heat loss, and improve the efficiency of the reheating process. Overall, monolithic refractories are essential in the iron and steel industry as they offer high-temperature resistance, chemical stability, and mechanical strength. They contribute to the longevity and efficiency of various equipment and processes, ensuring smooth operations and high-quality steel production.
- Q: How do monolithic refractories withstand thermal shock and mechanical stress?
- Monolithic refractories are designed to withstand thermal shock and mechanical stress due to their unique composition and installation process. These refractories are made from a single, continuous material, eliminating any joints or seams that could weaken the structure. Additionally, they have a high thermal conductivity which allows them to efficiently distribute and dissipate heat, minimizing thermal gradients that can cause cracking. Furthermore, the installation technique involves forming the refractory in situ, ensuring a tight fit and reducing the likelihood of mechanical failure. Overall, the combination of their composition, thermal conductivity, and installation method enables monolithic refractories to withstand thermal shock and mechanical stress effectively.
- Q: What are the factors affecting the thermal conductivity of monolithic refractories?
- There are several factors that can affect the thermal conductivity of monolithic refractories. 1. Composition: The chemical composition of the refractory material plays a significant role in determining its thermal conductivity. Different types of refractories have different thermal conductivities based on the types and amounts of raw materials used. For example, refractories with a higher content of insulating materials, such as alumina or silica, tend to have lower thermal conductivities. 2. Porosity: The porosity of the refractory material also affects its thermal conductivity. Higher porosity means there are more air or gas-filled voids within the material, which can act as thermal insulators. Therefore, refractories with higher porosity tend to have lower thermal conductivities. 3. Density: The density of the refractory material is another important factor. Higher density materials usually have higher thermal conductivities, as the particles are packed more closely together, allowing for better heat transfer. 4. Grain size: The size of the grains in the refractory material can impact thermal conductivity. Smaller grain sizes result in higher contact points between particles, facilitating better heat transfer. Therefore, refractories with smaller grain sizes typically have higher thermal conductivities. 5. Temperature: The temperature at which the refractory material operates can also affect its thermal conductivity. Some materials may exhibit changes in thermal conductivity at different temperature ranges. For instance, certain refractories may have lower thermal conductivities at low temperatures but higher conductivities at high temperatures due to changes in their crystal structure. 6. Moisture content: The presence of moisture or water in the refractory material can significantly decrease its thermal conductivity. Water has a relatively low thermal conductivity, so even a small amount of moisture can act as an insulating barrier within the material. 7. Microstructure: The microstructure of the refractory material, including the arrangement and orientation of its grains, can affect thermal conductivity. A well-aligned microstructure with good interconnectivity between the grains can enhance heat transfer, resulting in higher thermal conductivity. Overall, the thermal conductivity of monolithic refractories is influenced by a combination of factors, including composition, porosity, density, grain size, temperature, moisture content, and microstructure. Understanding and controlling these factors is crucial for optimizing the thermal performance of monolithic refractories in various high-temperature applications.
- Q: What are monolithic refractories and how are they used in the iron and steel industry?
- Monolithic refractories possess a unified and uninterrupted structure, distinguishing them as a distinct type of refractory material. Unlike traditional refractory bricks, which involve the firing of individual pieces in a kiln, monolithic refractories consist of a single, seamless mass. This characteristic grants them superior versatility in terms of shape and size, rendering them ideal for a plethora of iron and steel industry applications. The iron and steel industry widely employs monolithic refractories due to their exceptional thermal and mechanical properties. They find application in various areas, including the lining of furnaces, kilns, ladles, and tundishes. These refractories are engineered to endure extreme temperatures, chemical erosion, and mechanical strain, ensuring the continuous and efficient operation of the steelmaking process. One prominent utilization of monolithic refractories within the iron and steel industry pertains to the lining of blast furnaces. These furnaces are substantial, cylindrical structures utilized for the production of pig iron from iron ore. The lining of these furnaces encounters intense heat, chemical reactions, as well as the abrasive nature of iron ore and hot gases. Monolithic refractories, such as castables and gunning mixes, are employed to establish a robust lining that can withstand these harsh conditions. Another application involves the lining of ladles, which transport molten metal from the blast furnace to the steelmaking process. Monolithic refractories are used to line these ladles, protecting them from the corrosive impact of hot metal and slag. In this scenario, the ability to shape monolithic forms facilitates precise fitting and effortless installation. Monolithic refractories also play a crucial role in tundishes, vessels employed to evenly distribute molten metal into molds during continuous casting. The refractories utilized in tundishes must exhibit exceptional resistance to thermal shock and erosion to endure the high temperatures and abrasive nature of the molten metal. Monolithic refractories, such as ramming and patching mixes, are employed to mend and maintain the tundish lining. In summary, the iron and steel industry relies on monolithic refractories for their capacity to endure harsh conditions and provide enduring linings in various applications. By harnessing these advanced refractory materials, the industry can achieve heightened efficiency, reduced downtime, and enhanced productivity in the steelmaking process.
- Q: How do monolithic refractories prevent thermal shock in the iron and steel industry?
- Monolithic refractories prevent thermal shock in the iron and steel industry by providing a continuous and seamless lining that can withstand extreme temperatures and sudden temperature changes. Their high thermal conductivity and low thermal expansion properties allow them to effectively distribute and absorb heat, reducing the likelihood of thermal stress and cracking. Additionally, their ability to form strong bonds with the furnace walls prevents the entry of hot gases and molten metal, further protecting against thermal shock.
- Q: Can monolithic refractories be customized for specific iron and steel processing requirements?
- Yes, monolithic refractories can be customized for specific iron and steel processing requirements. Monolithic refractories are known for their versatility and ability to be tailored to various applications. The composition, physical properties, and installation techniques of monolithic refractories can be adjusted to meet the specific needs of iron and steel processing. For example, the choice of raw materials used in the manufacturing of monolithic refractories can be customized to withstand the high temperatures and harsh chemical environments encountered in iron and steel processing. Different types of aggregates, binders, and additives can be selected to enhance the refractory's resistance to thermal shock, erosion, and corrosion. Furthermore, the installation method of monolithic refractories can be adapted to suit the specific requirements of iron and steel processing. Whether it is gunning, casting, ramming, or spraying, the installation technique can be customized to ensure optimal performance and longevity in the given application. Additionally, monolithic refractories can also be tailored to specific shapes and sizes to fit the various equipment and structures used in iron and steel processing. This allows for a more precise and efficient lining of furnaces, ladles, tundishes, and other vessels, thereby improving the overall productivity and performance of the process. In summary, monolithic refractories can be customized to meet the specific iron and steel processing requirements by adjusting their composition, physical properties, installation techniques, and shape. This customization ensures that the refractories can withstand the extreme conditions encountered in these industries, leading to improved performance, longer service life, and enhanced productivity.
- Q: What are the main factors affecting the abrasion resistance of monolithic refractories?
- The main factors affecting the abrasion resistance of monolithic refractories can be categorized into three key aspects: material composition, microstructure, and service conditions. Firstly, material composition plays a crucial role in determining the abrasion resistance of monolithic refractories. The choice of raw materials, such as aggregates and binders, directly influences the overall hardness, strength, and wear resistance of the refractory. For instance, high-alumina refractories, which contain a high percentage of alumina as the main component, tend to exhibit excellent abrasion resistance due to the hardness and toughness of alumina. Conversely, refractories with a high proportion of softer materials like clay or magnesia may have lower abrasion resistance. Secondly, the microstructure of monolithic refractories greatly affects their ability to withstand abrasion. The distribution and orientation of aggregates, as well as the bond strength between the particles and the matrix, play significant roles in determining the resistance to wear. A well-distributed and interconnected network of aggregates can enhance the refractory's strength and resistance to abrasion. Additionally, a dense and well-sintered matrix can inhibit the penetration of abrasive particles, thereby reducing wear. Lastly, the service conditions in which the monolithic refractories are exposed to are crucial factors in determining their abrasion resistance. Factors such as temperature, atmosphere, and mechanical stress can significantly impact the wear behavior of refractories. High temperatures can cause thermal expansion and contraction, leading to cracks and spalling, which can accelerate abrasion. The presence of corrosive gases or chemicals can also deteriorate the refractory's microstructure, reducing its resistance to wear. Furthermore, mechanical stress from impact or friction can cause localized wear and damage the refractory. In conclusion, the main factors affecting the abrasion resistance of monolithic refractories include material composition, microstructure, and service conditions. By carefully selecting the appropriate raw materials, optimizing the microstructure, and considering the specific service conditions, it is possible to enhance the abrasion resistance of monolithic refractories and improve their overall performance in high-wear applications.
Send your message to us
Monolithic Refractories for Iron and Steel Industry:Low Weight Castable for Fireplace and Industrial Furnace
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 kg
- Supply Capability:
- 3000000 kg/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords