Steel billet in low price as steel material
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 21643 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Steel billet
Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc.
The billet is mainly divided into two kinds from the shape:
Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.
Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. ,
Size :100mm to 165mm
Length:6~12meters
Grade: Q195/Q215/Q235/Q275
Qaulity:own factory, stable quality
Tolerance: Strictly according to the G/B and JIS standard
Gade:
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
Q195 | ≤0.12 | ≤0.50 | ≤0.040 | ≤0.035 | ≤0.30 |
Q235 | ≤0.20 | ≤1.40 | ≤0.045 | ≤0.045 | ≤0.35 |
Q275 | ≤0.22 | ≤1.50 | ≤0.045 | ≤0.045 | ≤0.35 |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
3SP | 0.14-0.22 | 0.40-0.85 | ≤ 0.050 | ≤ 0.040 | 0.05-0.15 |
5SP | 0.28-0.37 | 0.50-1.00 | ≤ 0.050 | ≤ 0.040 | 0.15-0.30 |
Our service :
We have a plant and professional team to provide our best service, from the start of production until the
loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers
to contact us for future business relationships! We will give you a surpise price.
Packing :
Within 30 days
1.Standard export package
2.In bundles with steel strips
3.As the requirements of the customers
FAQ:
Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT
Q:How to guarantee the quality of the products?
A:We have established the international advanced quality management system,every link from raw material
to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market.
At the same time, we will provide necessary follow-up service assurance.
Q:How long can we receive the product after purchase?
A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.
The pecific time of receiving is related to the state and position of customers.
- Q: What are the potential applications of steel billets in the automotive aftermarket?
- The automotive aftermarket can benefit greatly from the wide variety of uses for steel billets. The strength, durability, and versatility of steel make it an ideal material for many applications. To begin with, steel billets are commonly used in the production of various automotive parts, such as engine components, transmission parts, suspension systems, and chassis components. These critical components require materials with high tensile strength and resistance to wear and tear, which steel billets can provide. In addition, steel billets can be utilized to create customized or aftermarket modifications for vehicles. This includes performance upgrades like engine tuning, exhaust systems, and suspension modifications. Thanks to its machinability, steel billets can be shaped and formed into precise shapes and sizes, resulting in improved performance and customization options. Furthermore, steel billets can be employed in the manufacturing of automotive tools and equipment used in the aftermarket. This encompasses tools like jacks, stands, wrenches, and other specialized equipment needed for repairs, maintenance, and modifications. The use of steel billets ensures that these tools are strong, durable, and capable of withstanding the challenging conditions of the automotive industry. Moreover, steel billets are also used in the production of aftermarket body parts and accessories. These can range from exterior components such as bumpers, grilles, and fenders, to interior accessories like shift knobs, pedals, and trim pieces. Steel billets can be shaped, welded, and finished to meet the desired specifications and aesthetics of the vehicle owner, creating a wide range of options for customization. Overall, steel billets have an extensive range of potential applications in the automotive aftermarket. From critical engine components to performance upgrades, tools, and body modifications, steel billets offer the necessary strength, durability, and versatility required in the automotive industry.
- Q: What are the factors that affect the price of steel billets?
- There are several factors that affect the price of steel billets, including the demand and supply dynamics in the market, fluctuations in raw material costs, production and transportation expenses, currency exchange rates, trade policies and tariffs, and overall economic conditions. Additionally, factors like technological advancements, environmental regulations, and geopolitical events can also impact steel billet prices.
- Q: How are steel billets used in the production of automotive exhaust systems?
- Steel billets are an essential component in the production of automotive exhaust systems. These billets, which are solid blocks of steel, serve as the raw material for various parts and components of the exhaust system. The first step in using steel billets is to heat them in a furnace to a specific temperature in order to soften the steel and make it malleable. Once heated, the billets are then shaped and formed into different parts of the exhaust system, such as pipes, mufflers, and catalytic converters. This shaping process can be done through hot rolling, cold rolling, or extrusion, depending on the desired shape and properties of the component. After shaping, the steel billets are further processed to enhance their strength and durability. This can involve heat treatment processes like quenching and tempering, which improve the steel's hardness, toughness, and resistance to corrosion. These treatments ensure that the exhaust system components can withstand the harsh conditions they will be exposed to, such as high temperatures and corrosive gases. Once the steel billets have been shaped and treated, they are then assembled and welded together to form the final exhaust system. This involves joining the various components, such as pipes and mufflers, through welding techniques like arc welding or laser welding. These welding processes ensure that the components are securely connected, preventing any leaks or failures in the exhaust system. Overall, steel billets play a crucial role in the production of automotive exhaust systems by providing the necessary raw material for shaping and forming the various components. Their strength, durability, and resistance to high temperatures and corrosion make them an ideal choice for manufacturing exhaust systems that can withstand the demanding conditions of automotive use.
- Q: What are the main challenges in the recycling of steel billets?
- The recycling of steel billets, which are semi-finished steel products, poses several challenges. The main challenges in the recycling of steel billets include: 1. Contamination: Steel billets can become contaminated with various materials during their use, such as oil, grease, paint, or other metals. Removing these contaminants and ensuring the purity of the recycled steel can be a complex and costly process. 2. Sorting and segregation: Steel billets come in different grades and sizes, and they need to be sorted and segregated accordingly for effective recycling. This requires advanced sorting technologies and manual labor to ensure the right billets are recycled in the appropriate manner. 3. Energy consumption: The recycling of steel billets involves melting and reprocessing the steel, requiring significant energy inputs. This energy consumption can be a challenge as it contributes to greenhouse gas emissions and increases the overall environmental impact of the recycling process. 4. Infrastructure and logistics: The collection, transport, and processing of steel billets require a well-developed infrastructure and logistics network. The lack of adequate facilities or transportation can hinder the efficient recycling of steel billets. 5. Economic viability: The economic viability of recycling steel billets can be a challenge, especially when the cost of recycling exceeds the value of the recycled material. This can discourage recycling efforts and lead to a higher reliance on primary steel production. 6. Consumer awareness and participation: Educating consumers about the importance of recycling steel billets and encouraging their participation in recycling programs is crucial. Lack of awareness and apathy towards recycling can hinder the collection of steel billets for recycling purposes. 7. International trade barriers: In some cases, trade barriers and import/export restrictions can affect the recycling of steel billets. These barriers can limit the flow of recycled steel billets across different countries, impacting the overall recycling capacity and market dynamics. Addressing these challenges requires a collaborative effort between industries, governments, and consumers. Investments in research and development, technology advancements, and policy support can help overcome these challenges and promote the sustainable recycling of steel billets.
- Q: What are the potential applications of steel billets in the automotive industry?
- Due to their exceptional strength and durability, steel billets offer a wide range of potential applications in the automotive industry. One notable use is in the manufacturing of automotive components such as engine blocks, crankshafts, and transmission parts. These components necessitate a material that can endure high temperatures, heavy loads, and repetitive stress, which steel billets can provide. Another significant application is in the production of chassis and body panels. Steel billets are frequently employed to construct the structural framework of a vehicle, ensuring safety and stability by delivering the necessary strength and rigidity. Additionally, steel billets can be shaped and sized in various ways, permitting the customization of chassis components to meet the specific requirements of different vehicle models. Steel billets are also utilized in the production of suspension systems and steering mechanisms. These parts require a material capable of absorbing vibrations, damping shocks, and providing precise control. Steel billets possess these properties, making them an ideal choice for these essential automotive components. Furthermore, steel billets find applications in the production of exhaust systems due to their ability to withstand high temperatures and corrosive environments. The resistance of steel to rust and corrosion guarantees the longevity of the exhaust system, contributing to the overall performance and efficiency of the vehicle. In conclusion, the potential applications of steel billets in the automotive industry are extensive. From engine components to chassis parts, suspension systems to exhaust systems, steel billets offer the required strength, durability, and versatility to meet the demanding needs of the automotive sector.
- Q: What are the main factors affecting the ductility of steel billets?
- The main factors affecting the ductility of steel billets are the composition of the steel, the temperature at which it is processed, and the amount of strain applied during shaping.
- Q: How are steel billets used in the manufacturing of construction machinery?
- Steel billets are used in the manufacturing of construction machinery as raw material for forging, casting, and machining processes. They are formed into various components such as gears, shafts, frames, and structural parts, providing the required strength and durability for heavy-duty applications in the construction industry.
- Q: What are the main factors affecting the hardness of steel billets?
- The hardness of steel billets is primarily influenced by several factors. Firstly, the carbon content plays a crucial role in determining the hardness of steel. Higher carbon content results in greater hardness, as carbon atoms occupy interstitial spaces within the iron crystal lattice, creating stronger bonds and increasing the material's resistance to deformation. Secondly, the presence of alloying elements has a significant impact on steel hardness. Alloying elements such as chromium, molybdenum, and vanadium form solid solutions with iron, altering its crystal structure and strengthening the material. These elements promote the formation of fine and homogeneous microstructures, leading to higher hardness. The heat treatment process is another crucial factor affecting steel billet hardness. Through processes like quenching and tempering, the steel undergoes controlled heating and rapid cooling, resulting in a transformation of its crystal structure. This process, known as martensitic transformation, increases the hardness of the steel by creating a high concentration of dislocations and reducing the grain size. Additionally, the cooling rate during solidification also affects the hardness of steel billets. Rapid cooling, such as in water quenching, promotes the formation of a fine microstructure and increases hardness. Slower cooling rates, on the other hand, allow for the growth of larger grains, resulting in reduced hardness. Lastly, the presence of impurities and non-metallic inclusions can negatively impact the hardness of steel billets. These impurities can disrupt the crystal lattice, reducing the material's strength and hardness. Therefore, the purity and cleanliness of the steel composition are crucial in achieving higher hardness levels. In conclusion, the hardness of steel billets is influenced by factors such as carbon content, alloying elements, heat treatment processes, cooling rate, and the presence of impurities. Understanding and controlling these factors are essential for achieving the desired hardness properties in steel billets.
- Q: What are the different surface defects found in alloy steel billets?
- There are several different surface defects that can be found in alloy steel billets. These defects can occur during the production process and can have an impact on the quality and performance of the final product. Some of the common surface defects found in alloy steel billets include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of the billet during the heating and cooling process. It can be caused by exposure to air or by the presence of impurities in the steel. Scale can negatively affect the surface finish and can also lead to corrosion. 2. Cracks: Cracks can occur on the surface of the billet due to various reasons such as improper cooling, excessive stress, or improper handling. These cracks can weaken the structural integrity of the billet and can lead to failure during subsequent processing or in the final product. 3. Pits: Pits are small depressions or cavities that can be found on the surface of the billet. They can be caused by the presence of impurities or by the reaction of the steel with the environment. Pits can affect the surface finish and can also act as stress concentration points, leading to further damage or failure. 4. Laminations: Laminations are layers or sheets of non-metallic material that can be found within the billet. They can occur due to incomplete bonding during the production process or due to the presence of impurities in the steel. Laminations can weaken the billet and can lead to failure under load. 5. Inclusions: Inclusions are non-metallic particles or impurities that can be found within the steel. They can be introduced during the production process or can be present in the raw materials. Inclusions can affect the mechanical properties of the steel and can lead to reduced strength, toughness, and ductility. 6. Decarburization: Decarburization is the loss of carbon from the surface of the steel. It can occur during the heating process or due to exposure to air. Decarburization can result in reduced hardness and strength in the affected area. It is important to detect and address these surface defects in alloy steel billets to ensure the production of high-quality and reliable products. Various inspection and testing methods, such as visual inspection, ultrasonic testing, and magnetic particle inspection, can be employed to identify and assess these defects.
- Q: What are the different shapes of steel billets?
- Steel billets can come in various shapes, including square, round, rectangular, and hexagonal.
Send your message to us
Steel billet in low price as steel material
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 21643 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords