• Steel Billet Low Price in high quality hot sale System 1
  • Steel Billet Low Price in high quality hot sale System 2
Steel Billet Low Price in high quality hot sale

Steel Billet Low Price in high quality hot sale

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
15200 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Size:
100mm to 165mm
Grade:
Q195/Q215/Q235/Q275
Length:
6 or 12meters

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets 

have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also 

known for their malleability and ductility, especially when exposed to varying temperatures during shaping and 

molding.

 

Used for the plant, the bridge,shipment building high rise building construction,lifting and transportation machinery, equipment manufracturing base building 

the support foundation pile manufacturing.

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed 

into more functional shapes and sizes. While they have already been put in the furnace, they still require 

a series of shaping and molding procedures such as hot and cold working, milling and cutting before they 

are sold in hardware stores, or used for different applications. The unformed billets, however, can be used 

in striking currency such as coins and as reserves, similar to gold bars.

Gade:

Standard

C(%)

Mn(%)

S(%)

P(%)

Si(%)

Q195

≤0.12

≤0.50

≤0.040

≤0.035

≤0.30

Q235

≤0.20

≤1.40

≤0.045

≤0.045

≤0.35

Q275

≤0.22

≤1.50

≤0.045

≤0.045

≤0.35

20MnSi

0.17-0.25

1.2-1.6

≤ 0.050

≤ 0.050

0.40-0.80

3SP

0.14-0.22

0.40-0.85

≤ 0.050

≤ 0.040

0.05-0.15

5SP

0.28-0.37

0.50-1.00

≤ 0.050

≤ 0.040

0.15-0.30

 

 

 

Steel Billet Low Price in high quality hot sale

Steel Billet Low Price in high quality hot sale

Steel Billet Low Price in high quality hot sale

Our service :

We have a plant and professional team to provide our best service, from the start of production until the 

loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers 

to contact us for future business relationships! We will give you a surpise price.

 

Packing : 

Within 30 days

1.Standard export package 
2.In bundles with steel strips 
3.As the requirements of the customers

FAQ:

Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT 
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT

 

Q:How to guarantee the quality of the products?

A:We have established the international advanced quality management system,every link from raw material 

to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. 

At the same time, we will provide necessary follow-up service assurance.

 

Q:How long can we receive the product after purchase?

A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. 

The pecific time of receiving is related to the state and position of customers.

 

 

Q: What is the difference between steel billets and steel ingots?
Steel billets and steel ingots, although both semi-finished steel products, differ in terms of their shape and manufacturing process. Rectangular or square-shaped bars, steel billets are typically produced through a continuous casting process. This process involves pouring molten steel into molds, allowing it to solidify into the desired shape. Billets are commonly used as raw material for further processing, such as rolling or forging, to create finished steel products like bars, rods, or wire. On the contrary, steel ingots are large, solid blocks of steel that are usually produced through a traditional casting process. In this process, molten steel is poured into large molds, left to cool and solidify. Ingots are mainly used for the production of larger steel components or as feedstock for forging or rolling operations. Prior to being processed into the final product, they are often remelted and refined. In terms of size, billets are generally smaller, with a cross-sectional area ranging from 36 to 155 square inches. On the other hand, ingots are larger, with a cross-sectional area exceeding 155 square inches. Both steel billets and steel ingots act as intermediary products in the steel manufacturing industry. The decision to use billets or ingots depends on the specific requirements of the final steel product and the manufacturing process involved.
Q: How are steel billets inspected for internal defects?
Steel billets are inspected for internal defects using various non-destructive testing (NDT) techniques. One common method is ultrasonic testing (UT), where high-frequency sound waves are used to detect defects inside the billet. A transducer sends ultrasonic waves into the billet, and the reflected waves are analyzed to identify any internal flaws. UT is capable of detecting defects such as cracks, voids, inclusions, and other discontinuities. Another method employed is magnetic particle inspection (MPI). This technique is particularly useful for detecting surface and near-surface defects in ferromagnetic materials like steel. A magnetic field is applied to the billet, and iron particles are spread over the surface. If there is a defect, the magnetic field will cause the particles to form visible indications, providing a clear indication of any internal flaws. Liquid penetrant testing (PT) is another widely used method for inspecting steel billets. In this process, a liquid dye is applied to the surface of the billet and allowed to penetrate any surface-breaking defects. After a specified time, excess dye is removed, and a developer is applied. The developer draws out the penetrant from any defects, making them visible under proper lighting conditions. Additionally, radiographic testing (RT) can be employed to detect internal defects in steel billets. This method uses X-rays or gamma rays to capture images of the billet's internal structure. The radiation passes through the billet, and a film or digital detector records the transmitted radiation. Any internal defects will appear as shadows on the image, allowing for their identification. Overall, a combination of these NDT techniques is often used to ensure thorough inspection of steel billets for internal defects. This helps maintain the quality and integrity of the billets, ensuring they meet the required specifications and standards.
Q: What are the main factors affecting the corrosion resistance of stainless steel billets?
The corrosion resistance of stainless steel billets is affected by various factors. These include the composition of the alloy, the presence of impurities, the manufacturing process, and the environment in which the billets are exposed. The alloy composition is crucial in determining the corrosion resistance of stainless steel. The addition of elements like chromium, nickel, and molybdenum enhances its resistance to corrosion. These elements create a protective oxide layer on the surface, acting as a barrier against corrosive agents. Impurities in the stainless steel billets can also impact their corrosion resistance. For instance, the presence of sulfur can lead to the formation of sulfide inclusions, reducing overall corrosion resistance. Therefore, controlling impurities during the manufacturing process is vital for optimal corrosion resistance. The manufacturing process employed to produce stainless steel billets can also affect their corrosion resistance. Factors such as temperature, cooling rate, and the presence of contaminants during production influence the material's microstructure, thus impacting its corrosion resistance. Lastly, the environment in which the stainless steel billets are exposed plays a significant role in their corrosion resistance. Variables like temperature, humidity, pH level, and the presence of corrosive agents like acids or chlorides can expedite the corrosion process. Therefore, considering the specific environmental conditions is crucial when selecting stainless steel billets for a particular application. In conclusion, the corrosion resistance of stainless steel billets is influenced by the alloy composition, impurities, manufacturing process, and environment. By carefully considering these factors, one can select stainless steel billets with optimal corrosion resistance for various applications.
Q: What do you mean by adding carbon to a table tennis racket?
The addition of carbon fibers increases the elasticity of the racket so as to increase the strength of the strike ball
Q: What are the common shapes of steel billets?
Depending on their intended use and manufacturing process, steel billets can be found in a range of shapes. Square, rectangular, round, and hexagonal are among the most common shapes. Square billets are typically utilized in applications that require stability and strength, such as construction materials and machinery parts. For structural components in construction and engineering projects, rectangular billets, with their elongated shape, are commonly employed. Round billets are often chosen for the production of pipes, tubes, and other cylindrical objects. As for hexagonal billets, their six-sided shape is frequently used in the manufacturing of hex nuts, bolts, and other fasteners. These various shapes offer versatility in order to meet the diverse requirements and applications of different industries.
Q: What is the role of steel billets in the production of sheet metal?
The production of sheet metal heavily relies on steel billets, which serve as the primary raw material. These billets are essentially solid bars of steel, typically rectangular or square in shape, and are produced through casting or hot rolling. Depending on the specific requirements of the sheet metal being manufactured, steel billets are produced in various sizes and lengths. To begin the production process, the steel billets are heated to a high temperature and then passed through a series of rolling mills. This rolling process is aimed at reducing the thickness of the billets and increasing their length. By applying pressure to the billets, they elongate and become thinner. This continuous rolling process is repeated multiple times until the desired thickness is achieved. Once the steel billets have been transformed into thin sheets, further processing is carried out to obtain the final sheet metal product. This may involve additional steps such as cutting, trimming, and surface treatments to enhance both the appearance and properties of the sheet metal. Steel billets are highly favored in the production of sheet metal due to their exceptional mechanical properties. Steel is renowned for its strength, durability, and malleability, making it an ideal material for sheet metal applications. By utilizing steel billets, the resulting sheet metal products possess these desirable properties. To summarize, steel billets serve as the starting point in the production of sheet metal. Through heating and rolling processes, the billets are transformed into thin sheets of steel, which are then further processed to create the final sheet metal products. The use of steel billets is crucial in ensuring the production of sheet metal with superior mechanical properties, making it an indispensable component in the manufacturing industry.
Q: What are the environmental impacts of producing steel billets?
The production of steel billets has several environmental impacts. One of the main concerns is the emission of greenhouse gases, particularly carbon dioxide (CO2), during the steelmaking process. Steel production is a significant contributor to global CO2 emissions, as the process requires high temperatures and the use of fossil fuels, such as coal or natural gas, to extract iron from iron ore. The combustion of these fuels releases CO2 into the atmosphere, contributing to climate change. Another environmental impact of steel billet production is the generation of air pollutants. The use of fossil fuels in steelmaking can result in the release of sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter, which contribute to air pollution and can have negative effects on human health. Additionally, the production of steel billets often involves the use of additives and chemicals, which can further contribute to air pollution if not properly managed. The extraction of iron ore, which is a primary raw material for steel production, can also have significant environmental consequences. Mining activities can lead to deforestation, habitat destruction, and soil erosion. Furthermore, the extraction and transportation of iron ore require the use of heavy machinery and vehicles, which consume energy and contribute to air pollution. Water usage is another environmental concern in steel billet production. Steelmaking processes require substantial amounts of water for cooling, cleaning, and dust suppression. The extraction and treatment of water, as well as the discharge of wastewater, can have adverse effects on local water sources, particularly if not properly managed or treated. Lastly, the production of steel billets also generates waste and by-products. Steel slag, a by-product of the steelmaking process, can contain heavy metals and other pollutants. If not properly treated or disposed of, these by-products can contaminate soil and water resources. Overall, the production of steel billets has significant environmental impacts, including greenhouse gas emissions, air pollution, water usage, and the generation of waste and by-products. To mitigate these impacts, efforts are being made to develop cleaner and more energy-efficient steelmaking technologies, increase the use of recycled steel, and improve waste management practices in the industry.
Q: How are steel billets used in the production of shafts?
Shafts require steel billets as an indispensable component for their production. These billets are semi-finished products that serve as the initial stage for diverse manufacturing processes. In the case of shaft production, steel billets serve as the raw material from which the shafts are formed. The process commences by heating the steel billets to a specific temperature, typically within a furnace. This heating procedure, referred to as "hot working," is of utmost importance as it renders the steel more pliable and easier to mold. Once the billet attains the desired temperature, it is subsequently transferred to either a forging press or a rolling mill. During the forging process, the heated billet undergoes high pressure and is shaped using specialized dies to achieve the desired dimensions for the shaft. This method permits precise control over the shape, size, and surface finish of the shaft. On the contrary, the rolling process entails the billet passing through a sequence of rollers that gradually shape it into a cylindrical form. Rolling is frequently employed for shafts necessitating a consistent cross-section along their length. Following the initial shaping process, the shafts go through additional steps such as heat treatment, machining, and finishing to fulfill the specific requirements of their intended applications. Heat treatment assists in enhancing the mechanical properties of the shaft, rendering it stronger, more durable, and resistant to wear. Subsequently, machining processes such as turning, milling, or grinding are conducted to achieve precise dimensions, smooth surfaces, and accurate tolerances. Altogether, steel billets occupy a pivotal role in the production of shafts as they serve as the starting point for the shaping processes imperative in creating these crucial components. Through meticulous manipulation and refinement, steel billets metamorphose into high-quality shafts utilized in a myriad of industries, including automotive, aerospace, manufacturing, and numerous others.
Q: What are the main factors affecting the wear resistance of steel billets?
The wear resistance of steel billets can be influenced by several key factors. Firstly, the composition of the steel plays a crucial role. The presence of specific alloying elements, like chromium, manganese, and molybdenum, greatly enhances the steel's wear resistance. These elements form carbides and other compounds that create a durable and hard surface capable of withstanding abrasion. In addition, the microstructure of the steel is vital in determining its wear resistance. Fine-grained steels tend to have better wear resistance due to their smaller grain size, which provides a more uniform and dense structure, reducing the likelihood of cracks and wear. Heat treatment processes, such as quenching and tempering, can further refine the microstructure and enhance wear resistance. The surface finish also affects wear resistance. A smooth and well-polished surface reduces friction between the steel billet and its surroundings, minimizing wear. Various machining techniques, such as grinding and polishing, can be used to achieve the desired surface finish. Furthermore, the hardness of the steel billet is a significant factor in wear resistance. Hardness is commonly measured using the Rockwell or Brinell scales, and higher hardness values generally indicate improved wear resistance. Heat treatment, alloying, and the addition of hardening agents can all help increase the hardness of the steel billet. Lastly, environmental factors can impact wear resistance. The presence of corrosive substances, high temperatures, or abrasive particles in the working environment can accelerate wear and reduce the lifespan of the steel billet. Implementing appropriate coatings, like chromium plating or thermal spraying, can mitigate these environmental effects and enhance wear resistance.
Q: How are steel billets used in the manufacturing of structural components?
Steel billets are used in the manufacturing of structural components as they are the starting material for various shaping and forming processes. These billets are heated and then worked upon through techniques like rolling, forging, or extrusion to produce different structural shapes such as beams, columns, or plates. This ensures that the components have the necessary strength, durability, and dimensional accuracy required for construction purposes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords