Mild steel billet price low but high quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 16532 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular
and abnormity of several kinds of, mainly related to the shape of rolled products.
The billet is mainly divided into two kinds from the shape:
Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate.
Size :100mm to 165mm
Length:6~12meters
Grade: Q195/Q215/Q235/Q275
Qaulity:own factory, stable quality
Tolerance: Strictly according to the G/B and JIS standard
Gade:
Standard | C(%) | Mn(%) | S(%) | P(%) | Si(%) |
Q195 | ≤0.12 | ≤0.50 | ≤0.040 | ≤0.035 | ≤0.30 |
Q235 | ≤0.20 | ≤1.40 | ≤0.045 | ≤0.045 | ≤0.35 |
Q275 | ≤0.22 | ≤1.50 | ≤0.045 | ≤0.045 | ≤0.35 |
20MnSi | 0.17-0.25 | 1.2-1.6 | ≤ 0.050 | ≤ 0.050 | 0.40-0.80 |
3SP | 0.14-0.22 | 0.40-0.85 | ≤ 0.050 | ≤ 0.040 | 0.05-0.15 |
5SP | 0.28-0.37 | 0.50-1.00 | ≤ 0.050 | ≤ 0.040 | 0.15-0.30 |
Our service :
We have a plant and professional team to provide our best service, from the start of production until the
loading into the vessel, we have a complete quality follow up procedure, to assure our products arrives to the customer with satisfaction. Welcome new and old customers
to contact us for future business relationships! We will give you a surpise price.
Packing :
Within 30 days
1.Standard export package
2.In bundles with steel strips
3.As the requirements of the customers
FAQ:
Q: What is payment terms?
A: FOB 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T BEFORE SHIPMENT
CIF and CFR 30% T/T IN ADVANCE AS DEPOSIT AND 70% T/T AS THE COPY OF B/L OR L/C AT SIGHT
Q:How to guarantee the quality of the products?
A:We have established the international advanced quality management system,every link from raw material
to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market.
At the same time, we will provide necessary follow-up service assurance.
Q:How long can we receive the product after purchase?
A :In the purchase of product within three working days, We will arrange the factory delivery as soon as possible.
The pecific time of receiving is related to the state and position of customers.
- Q: What are the major steel billet producing countries?
- The major steel billet producing countries include China, India, Russia, Japan, and the United States.
- Q: How are steel billets used in the production of automotive braking systems?
- The production of automotive braking systems heavily relies on steel billets, which serve as a vital ingredient. These billets, essentially semi-finished steel products, act as the raw material for further processing. Typically, they are created through the casting process, in which molten steel is poured into molds and allowed to solidify. In the realm of automotive braking systems, steel billets are primarily utilized for the manufacturing of brake rotors or discs. These components play a critical role as they provide the surface on which the brake pads make contact, generating friction and ultimately halting the vehicle. Due to the intense stress and heat experienced during braking, brake rotors require a material that is strong, durable, and heat-resistant – qualities that steel possesses. Once the steel billets are acquired, they undergo a series of manufacturing processes to transform them into brake rotors. Initially, the billets are heated to a specific temperature, enhancing their malleability and making them easier to shape. Subsequently, a process known as forging is employed, subjecting the heated billets to high pressure in order to mold them into the desired form of the brake rotor. This forging process strengthens and fortifies the steel, rendering it resistant to wear and deformation. Following the forging stage, the brake rotor undergoes additional machining processes. This includes the turning of the rotor's surface to ensure it is flat and smooth, providing an even contact surface for the brake pads. Further modifications, such as drilling or slotting, may be performed to enhance heat dissipation and prevent the accumulation of gases or debris between the pad and rotor. These machining processes are vital for achieving the necessary dimensions and surface finish of the brake rotor. Once the brake rotor is manufactured, it is then assembled alongside other components of the braking system – brake calipers, pads, and hydraulic lines – to create a fully functional braking system. The utilization of steel billets in the production of brake rotors guarantees a reliable, durable, and capable braking system that can withstand the demanding conditions of automotive braking. In conclusion, steel billets are indispensable in the production of automotive braking systems, serving as the foundation for the creation of brake rotors – key components responsible for halting vehicles. Through processes such as heating, forging, and machining, the billets are transformed into robust and finely finished brake rotors. The end result is a dependable and long-lasting braking system that ensures vehicle safety and performance.
- Q: What are the potential applications of steel billets in the textile industry?
- Steel billets have a wide range of potential applications in the textile industry. One of the major areas where steel billets can be used is in the production of textile machinery. Steel billets can be used to manufacture various machine components such as gears, shafts, and frames, which are crucial for the smooth functioning of textile machines. These components require high strength and durability, and steel billets provide the necessary properties to withstand the demanding operational conditions of textile machinery. Another potential application of steel billets in the textile industry is in the production of textile molds and dies. Steel billets can be machined into intricate shapes and used to create molds and dies for fabricating textile products. These molds and dies are used in processes like injection molding and extrusion, which are commonly used in textile manufacturing. Steel billets offer excellent dimensional stability and resistance to wear and tear, making them ideal for producing long-lasting molds and dies. Furthermore, steel billets can be used in the construction of textile production facilities. Steel is a versatile and strong material that can be easily shaped and welded, making it suitable for the construction of textile industry infrastructure. Steel billets can be used to fabricate support structures, frames, and beams for textile factories. These structures provide stability and strength to the buildings and ensure the safe and efficient operation of textile production processes. In addition, steel billets can find applications in the packaging of textile products. Steel billets can be used to manufacture steel drums and containers, which are commonly used for storing and transporting textiles. Steel drums offer excellent durability, protection against external factors, and resistance to damage during handling and transportation. Overall, the potential applications of steel billets in the textile industry are diverse and encompass various aspects of textile manufacturing, including machinery production, mold and die fabrication, construction, and packaging. The use of steel billets in these applications contributes to the efficiency, reliability, and quality of textile production processes.
- Q: How are steel billets used in the production of construction equipment?
- Steel billets are an integral component in the production of construction equipment. These billets, which are essentially semi-finished steel forms, serve as the raw material for various construction equipment components. They are typically manufactured through a process called continuous casting, where molten steel is solidified in molds to form solid rectangular or square billets. Once steel billets are obtained, they undergo further processing to transform them into the desired construction equipment parts. This involves shaping, cutting, and machining the billets to create components such as gears, shafts, axles, and structural frames. The versatility of steel allows for customization of these components to meet the specific requirements of different construction equipment. The use of steel billets in construction equipment production offers several advantages. Firstly, steel is known for its exceptional strength and durability, making it ideal for heavy-duty applications. By using steel billets, construction equipment manufacturers can ensure that their products can withstand the demanding conditions of construction sites and provide long-lasting performance. Additionally, steel billets can be easily welded, allowing for the assembly of complex structures and components. This welding capability is crucial in the production of construction equipment, where multiple parts need to be securely joined together to form a robust and reliable machine. Furthermore, steel billets offer excellent machinability, meaning they can be easily shaped and formed into the desired dimensions. This allows for precise manufacturing of intricate components, enhancing the overall performance and functionality of the construction equipment. Lastly, steel billets are readily available in a wide range of grades and compositions, enabling manufacturers to select the most suitable steel alloy for their specific construction equipment applications. This flexibility allows for the optimization of the equipment's performance, weight, and cost-effectiveness. In conclusion, steel billets play a vital role in the production of construction equipment by serving as the raw material for various components. Their strength, durability, weldability, machinability, and wide range of available alloys make them an ideal choice for manufacturing construction equipment that can withstand the demanding conditions of construction sites and deliver long-lasting performance.
- Q: What are the different types of steel billet rolling mill automation systems?
- There are various types of steel billet rolling mill automation systems, including manual systems where operators control the process manually, semi-automatic systems where certain steps are automated but still require operator intervention, and fully automatic systems where the entire process is controlled by computerized systems with minimal human intervention.
- Q: How are steel billets used in the production of wire rods?
- Steel billets are a crucial raw material in the production of wire rods. These billets, which are cylindrical in shape, serve as the starting point for the wire rod manufacturing process. The process begins with the heating of steel billets in a furnace to achieve the desired temperature for hot rolling. Once heated, the billets are passed through a series of rolling mills, where they undergo a process called hot rolling. This process involves passing the billets through a set of rollers that gradually reduce their diameter, while increasing their length. As a result, the billets transform into long, thin, and continuous wire rods. During hot rolling, the steel billets undergo plastic deformation, meaning that their shape changes under the application of heat and pressure. This process helps to align the internal grain structure of the steel, resulting in improved mechanical properties such as strength, ductility, and toughness. After the hot rolling process, the wire rods are typically coiled and cooled. They may then undergo further treatments such as pickling, surface coating, or heat treatment to enhance their quality and suitability for specific applications. Finally, the wire rods are ready to be used in various industries, such as automotive, construction, and manufacturing, for the production of a wide range of products, including wires, cables, nails, screws, and reinforcement bars. In summary, steel billets are transformed into wire rods through the process of hot rolling. This process involves heating the billets, passing them through rolling mills to reduce their diameter and increase their length, and then further treating and cooling them. The resulting wire rods are used in a multitude of applications, making them an essential component in the production of various products.
- Q: What is the typical surface finish of a steel billet?
- The typical surface finish of a steel billet can vary depending on the specific application and processing method. However, in general, steel billets are commonly produced with a surface finish that is relatively rough and may exhibit some imperfections such as scale, oxide layers, or minor surface irregularities. This is primarily due to the manufacturing process, which involves hot rolling or casting of the steel billet. Hot rolling is a common method used to produce steel billets. During this process, the steel is heated to high temperatures and passed through a series of rollers to shape it into the desired dimensions. This high-temperature process can result in the formation of scale or oxide layers on the surface of the billet. These layers can give the steel a rough and textured appearance. Similarly, steel billets produced through casting methods, such as continuous casting or ingot casting, may also exhibit a rough surface finish. In these processes, the molten steel is solidified in molds or ingot molds, which can result in the formation of surface imperfections such as surface cracks, pits, or uneven surfaces. However, it is important to note that the surface finish of steel billets can be improved through additional processes such as descaling, shot blasting, or grinding. These processes can help remove the scale, oxide layers, or other surface imperfections, resulting in a smoother and more uniform surface finish. Additionally, some steel billets intended for specific applications, such as precision machining or forging, may undergo additional surface treatments to achieve a desired finish, such as polishing or coating. Overall, the typical surface finish of a steel billet is relatively rough and may exhibit scale, oxide layers, or minor surface irregularities. However, various additional processes can be applied to improve the surface finish according to specific requirements and applications.
- Q: What are the different surface treatments for improved surface hardness in steel billets?
- There are several different surface treatments that can be used to improve the surface hardness of steel billets. These treatments are designed to enhance the wear resistance and durability of the steel, making it suitable for various industrial applications. One common surface treatment method is through carburizing. Carburizing involves introducing carbon into the surface of the steel billet by heating it in a carbon-rich atmosphere, such as methane or propane. This process forms a hard layer of high-carbon steel on the surface, known as a case, which significantly increases the surface hardness of the billet. Another surface treatment technique is nitriding. Nitriding is a process that involves exposing the steel billet to a nitrogen-rich atmosphere at elevated temperatures. This causes nitrogen atoms to diffuse into the surface of the steel, forming a hard nitride layer. Nitriding not only improves surface hardness but also enhances the resistance to wear and corrosion. A third surface treatment method is induction hardening. Induction hardening utilizes the principle of electromagnetic induction to heat the surface of the steel billet rapidly. Once the desired temperature is reached, the billet is quenched, resulting in a hardened surface layer. This treatment is particularly effective for localized hardening of specific areas on the steel billet. Additionally, shot peening is another surface treatment technique used to improve surface hardness. Shot peening involves bombarding the surface of the steel billet with small, high-velocity steel shots. This process induces compressive stresses in the surface layer, thereby increasing the hardness and fatigue resistance of the billet. Each of these surface treatments has its advantages and disadvantages, and the choice of treatment method depends on the specific requirements and intended use of the steel billets. By selecting an appropriate surface treatment, manufacturers can ensure that steel billets possess the necessary hardness and durability for their intended applications.
- Q: What are the potential applications of steel billets in the telecommunications industry?
- Steel billets have a wide range of potential applications in the telecommunications industry. One of the key applications is in the construction of telecommunication towers. Steel billets can be used to manufacture the structural components of these towers, providing strength and durability to support the weight of antennas and other equipment. Additionally, steel billets can be utilized in the production of transmission line hardware such as pole line fittings, brackets, and clamps. These components are crucial in the installation and maintenance of telecommunication lines, ensuring their stability and reliability. Moreover, steel billets can be employed in the manufacturing of underground and overhead enclosures for telecommunication cables. These enclosures protect the cables from external factors such as moisture, heat, and physical damage, ensuring uninterrupted communication. Steel billets also find application in the production of telecommunication equipment cabinets and racks. These cabinets provide a secure and organized space for housing network equipment such as servers, switches, and routers. The strength and rigidity of steel billets make them ideal for supporting heavy equipment and providing protection against environmental hazards. Furthermore, steel billets can be utilized in the construction of telecommunication infrastructure, such as base stations and equipment shelters. These structures require robust materials to withstand harsh weather conditions and provide a stable foundation for the installation of telecommunications equipment. In summary, the potential applications of steel billets in the telecommunications industry are vast and encompass various aspects, ranging from tower construction to cable enclosures and equipment cabinets. The strength, durability, and versatility of steel make it an ideal material for supporting and protecting telecommunication infrastructure and equipment.
- Q: How is a steel billet made?
- A steel billet is made through a process called continuous casting. It involves pouring molten steel into a water-cooled mold, which solidifies the steel into a rectangular shape. The solidified steel is then cut to the desired length to form a steel billet.
Send your message to us
Mild steel billet price low but high quality
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 16532 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords